

Nedeštruktívne skúšanie. Skúšanie ultrazvukom. Charakteristika a stanovenie veľkosti chýb (ISO 16827: 2012).

STN EN ISO 16827

01 5019

Non-destructive testing - Ultrasonic testing - Characterization and sizing of discontinuities (ISO 16827:2012)

Táto norma obsahuje anglickú verziu európskej normy. This standard includes the English version of the European Standard.

Táto norma bola oznámená vo Vestníku ÚNMS SR č. 08/14

Obsahuje: EN ISO 16827:2014, ISO 16827:2012

Oznámením tejto normy sa ruší STN EN 583-5 (01 5019) z mája 2003

EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM

EN ISO 16827

March 2014

ICS 19.100

Supersedes EN 583-5:2000

English Version

Non-destructive testing - Ultrasonic testing - Characterization and sizing of discontinuities (ISO 16827:2012)

Essais non destructifs - Contrôle par ultrasons - Caractérisation et dimensionnement des discontinuités (ISO 16827:2012)

Zerstörungsfreie Prüfung - Ultraschallprüfung -Beschreibung und Größenbestimmung von Inhomogenitäten (ISO 16827:2012)

This European Standard was approved by CEN on 9 February 2014.

CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom.

EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG

CEN-CENELEC Management Centre: Avenue Marnix 17, B-1000 Brussels

EN ISO 16827:2014 (E)

	_		4	_		4_
	റ	n	T	0	n	ts
J	u		L			LJ

Foreword......3

Foreword

The text of ISO 16827:2012 has been prepared by Technical Committee ISO/TC 135 "Non-destructive testing" of the International Organization for Standardization (ISO) and has been taken over as EN ISO 16827:2014 by Technical Committee CEN/TC 138 "Non-destructive testing" the secretariat of which is held by AFNOR.

This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by September 2014, and conflicting national standards shall be withdrawn at the latest by September 2014.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN [and/or CENELEC] shall not be held responsible for identifying any or all such patent rights.

This document supersedes EN 583-5:2000.

According to the CEN-CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom.

Endorsement notice

The text of ISO 16827:2012 has been approved by CEN as EN ISO 16827:2014 without any modification.

INTERNATIONAL STANDARD

ISO 16827

First edition 2012-04-01

Non-destructive testing — Ultrasonic testing — Characterization and sizing of discontinuities

Essais non destructifs — Contrôle par ultrasons — Caractérisation et dimensionnement des discontinuités

ISO 16827:2012(E)

COPYRIGHT PROTECTED DOCUMENT

© ISO 2012

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

Contents

Page

Forewordv					
Introductionvi					
1	Scope	1			
2	Normative references	1			
3	Principles of characterization of discontinuities	1			
3.1	General	1			
3.2	Requirements for surface condition				
4	Pulse echo techniques				
4.1 4.2	General Location of discontinuity				
4.3	Orientation of discontinuity	2			
4.4	Assessment of multiple indications				
4.5 4.5.1	Shape of discontinuity				
4.5.2	Detailed classification of shape				
4.6	Maximum echo height of indication				
4.7 4.7.1	Size of discontinuityGeneral				
4.7.1	Maximum echo height techniques				
4.7.3	Probe movement sizing techniques	5			
4.7.4	Selection of sizing techniques				
4.7.5 4.7.6	Sizing techniques with focussing ultrasonic probes				
4.7.7	Special sizing techniques				
5	Transmission technique	7			
5.1	General				
5.2	Location of discontinuity				
5.3 5.4	Evaluation of multiple discontinuities Reduction of signal amplitude				
5. 4 5.5	Sizing of discontinuity				
Annex	A (normative) Analysis of multiple indications				
A.1	Lateral characterisation				
A.2	Transverse (Through-thickness) characterisation				
A.3	Shadow technique				
	B (normative) Techniques for the classification of discontinuity shape				
B.1 B.1.1	Simple classification				
B.1.2	Reconstruction technique				
B.1.3	Echo envelope technique				
B.2 B.2.1	Detailed classificationGeneral				
B.2.1	Echodynamic pattern technique				
B.2.3	Directional reflectivity	17			
B.3	Combination of data				
	Annex C (informative) Maximum echo height sizing technique2				
C.1 C.1.1	Distance-gain-size (DGS) technique				
C.1.1 C.1.2	Applications and limitations				
C.2	Distance-amplitude-correction (DAC) curve technique				
C.2.1	Principle	25			

ISO 16827:2012(E)

C.2.2	Applications and limitations	26
	D (normative) Probe movement sizing techniques	
D.1	Fixed amplitude level techniques	
D.1.1	Principle	
D.1.2	Application and limitations	
D.2	6 dB drop from maximum technique	
D.2.1	Principle	
D.2.2	Application and limitations	
D.3	12 dB or 20 dB drop from maximum technique	
D.3.1	Principle	
D.3.2	Application and limitations	
D.4	Drop to noise level technique	
D.4.1	Principle	
D.4.2	Application and limitations	
D.5	6 dB drop tip location technique	
D.5.1	Principle	
D.5.2	Application and limitations	
D.6	Beam axis tip location technique	
D.6.1	Principle	
D.6.2	Application and limitations	
D.7	20 dB drop tip location technique	
D.7.1	Principle	
D.7.2	Application and limitations	30
Annex	E (normative) Iterative sizing technique	39
E.1	Scope	
E.2	Normal incidence testing	39
E.2.1	Principle	39
E.2.2	Adjustment of gain	39
E.2.3	Procedure	39
E.3	Oblique incidence testing	40
Annov	F (normative) Mathematical algorithms for the estimation of the actual size of a	
AIIIIEX	discontinuity	15
F.1	Large planar discontinuities	
F.2	Small planar discontinuities	
F.3	Planar discontinuities in a cylindrical test object	
	•	
	G (informative) Examples of special sizing techniques	
G.1	Tip diffraction techniques	
G.2	Synthetic aperture focussing technique (SAFT)	51

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 16827 was prepared by Technical Committee ISO/TC 135, *Non-destructive testing*, Subcommittee SC 3, *Ultrasonic testing*.

Introduction

This International Standard is based on EN 583-5:2000+A1:2003, *Non-destructive testing — Ultrasonic examination — Part 5: Characterization and sizing of discontinuities*.

The following International Standards are linked.

ISO 16810, Non-destructive testing — Ultrasonic testing — General principles

ISO 16811, Non-destructive testing — Ultrasonic testing — Sensitivity and range setting

ISO 16823, Non-destructive testing — Ultrasonic testing — Transmission technique

ISO 16826, Non-destructive testing — Ultrasonic testing — Examination for discontinuities perpendicular to the surface

ISO 16827, Non-destructive testing — Ultrasonic testing — Characterization and sizing of discontinuities

ISO 16828, Non-destructive testing — Ultrasonic testing — Time-of-flight diffraction technique as a method for detection and sizing of discontinuities

Non-destructive testing — Ultrasonic testing — Characterization and sizing of discontinuities

1 Scope

This document specifies the general principles and techniques for the characterization and sizing of previously detected discontinuities in order to ensure their evaluation against applicable acceptance criteria. It is applicable, in general terms, to discontinuities in those materials and applications covered by ISO 16810.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 16810:2012, Non-destructive testing — Ultrasonic testing — General principles

ISO 16811, Non-destructive testing — Ultrasonic testing — Sensitivity and range setting

ISO 16823, Non-destructive testing — Ultrasonic testing — Transmission technique

ISO 16828, Non-destructive testing — Ultrasonic testing — Time-of-flight diffraction technique as a method for detection and sizing of discontinuities

ISO 23279, Non-destructive testing of welds — Ultrasonic testing — Characterization of indications in welds

koniec náhľadu – text ďalej pokračuje v platenej verzii STN