| STN | Kozmická technika. Inžinierstvo ľudských faktorov. | STN<br>EN 16603-10-11 |
|-----|----------------------------------------------------|-----------------------|
|     |                                                    | 31 0543               |

Space engineering - Human factors engineering

Táto norma obsahuje anglickú verziu európskej normy. This standard includes the English version of the European Standard.

Táto norma bola oznámená vo Vestníku ÚNMS SR č. 11/14

Obsahuje: EN 16603-10-11:2014

STN EN 16603-10-11: 2014

## EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM

#### EN 16603-10-11

July 2014

ICS 49.140

#### **English version**

#### Space engineering - Human factors engineering

Ingéniérie spatiale - Ingénierie des facteurs humains

Raumfahrttechnik - Technik der Humanfaktoren

This European Standard was approved by CEN on 28 December 2013.

CEN and CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN and CENELEC member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN and CENELEC member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.

CEN and CENELEC members are the national standards bodies and national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom.





CEN-CENELEC Management Centre: Avenue Marnix 17, B-1000 Brussels

## **Table of contents**

| Forew  | eword    |                                           |    |
|--------|----------|-------------------------------------------|----|
| Introd | uction   |                                           | 6  |
| 1 Scop | oe       |                                           | 8  |
| 2 Norn | native r | references                                | 9  |
| 3 Tern | ns, defi | nitions and abbreviated terms             | 10 |
| 3.1    | Terms    | from other standards                      | 10 |
| 3.2    | Terms    | specific to the present standard          | 10 |
| 3.3    | Abbrev   | viated terms                              | 12 |
| 4 Requ | uiremer  | nts                                       | 13 |
| 4.1    | Overvi   | ew                                        | 13 |
| 4.2    | Key H    | FE parameters for human-machine systems   | 13 |
|        | 4.2.1    | General                                   | 13 |
|        | 4.2.2    | Context of use                            | 16 |
| 4.3    | HFE ro   | ole and mission context                   | 16 |
|        | 4.3.1    | General                                   | 16 |
|        | 4.3.2    | HFE role                                  | 16 |
|        | 4.3.3    | Operations nomenclature                   | 16 |
|        | 4.3.4    | Users manual                              | 17 |
|        | 4.3.5    | Training approach                         | 17 |
|        | 4.3.6    | Mission phases                            | 18 |
|        | 4.3.7    | Identification of requirements            | 18 |
| 4.4    | Humar    | n centred design requirements             | 18 |
|        | 4.4.1    | General                                   | 18 |
|        | 4.4.2    | Planning the human-centred design process | 19 |
|        | 4.4.3    | Human-centred design activities           | 19 |
| 4.5    | Humar    | n reference characteristics               | 21 |
|        | 4.5.1    | Anthropometry and biomechanics            | 21 |
|        | 4.5.2    | Electronic mannequin                      | 21 |
|        | 4.5.3    | Physical performance and fatigue          | 21 |

|       | 4.5.4    | Cognitive performance and fatigue                            | 21 |
|-------|----------|--------------------------------------------------------------|----|
| 4.6   | HFE re   | quirements                                                   | 22 |
|       | 4.6.1    | General                                                      | 22 |
|       | 4.6.2    | Requirements process                                         | 22 |
|       | 4.6.3    | Safety                                                       | 23 |
|       | 4.6.4    | Hardware ergonomics                                          | 23 |
|       | 4.6.5    | Environmental ergonomics                                     | 23 |
|       | 4.6.6    | Cognitive ergonomics                                         | 24 |
|       | 4.6.7    | Operations design ergonomics                                 | 24 |
| 4.7   | Crew sy  | ystems                                                       | 24 |
|       | 4.7.1    | Overview                                                     | 24 |
|       | 4.7.2    | Habitable environments                                       | 25 |
|       | 4.7.3    | Labels and cues                                              | 25 |
|       | 4.7.4    | Architecture complements                                     | 25 |
|       | 4.7.5    | Components and provisions for crew stations                  | 26 |
|       | 4.7.6    | Work stations                                                | 27 |
|       | 4.7.7    | Off duty stations                                            | 27 |
|       | 4.7.8    | Physical maintenance stations                                | 28 |
|       | 4.7.9    | Medical facilities and provisions                            | 28 |
|       | 4.7.10   | Extra vehicular/planetary activity requirements and supports | 28 |
| 4.8   | Informa  | atics support                                                | 29 |
| 4.9   | Operati  | on products                                                  | 29 |
|       | 4.9.1    | Procedures                                                   | 29 |
|       | 4.9.2    | Cue cards                                                    | 30 |
|       | 4.9.3    | Timeline                                                     | 30 |
|       | 4.9.4    | Displays                                                     | 30 |
|       | 4.9.5    | Training requirements                                        | 31 |
| 4.10  | Continu  | ous assessment instruments                                   | 31 |
|       | 4.10.1   | Continuous assessment process                                | 31 |
|       | 4.10.2   | Events                                                       | 34 |
|       | 4.10.3   | Tools                                                        | 35 |
| 4.11  | Verifica | tion methods requirements                                    | 37 |
|       | 4.11.1   | Overview                                                     | 37 |
|       | 4.11.2   | Analysis and similarity                                      | 37 |
|       | 4.11.3   | Ground HFE test                                              | 38 |
|       | 4.11.4   | System simulations                                           | 39 |
| Annex | A (norn  | native) <b>HCD process plan - DRD</b>                        | 40 |

## EN 16603-10-11:2014 (E)

| X     | <b>B</b> (norr | mative) HFE analysis and simulation report - DRD       | 43 |
|-------|----------------|--------------------------------------------------------|----|
| B.1   | DRD ic         | lentification                                          | 43 |
|       | B.1.1          | Requirement identification and source document         | 43 |
|       | B.1.2          | Purpose and objective                                  | 43 |
| B.2   | Expect         | ed response                                            | 43 |
|       | B.2.1          | Scope and content                                      | 43 |
|       | B.2.2          | Special remarks                                        | 45 |
| Annex | C (norr        | mative) HFE continuous assessment process report - DRD | 46 |
| C.1   | DRD ic         | lentification                                          | 46 |
|       | C.1.1          | Requirement identification and source document         | 46 |
|       | C.1.2          | Purpose and objective                                  | 46 |
| C.2   | Expect         | ed response                                            | 46 |
|       | C.2.1          | Scope and content                                      | 46 |
|       | C.2.2          | Special remarks                                        | 48 |
| Annex | <b>D</b> (norr | mative) HFE test report - DRD                          | 49 |
| D.1   | DRD ic         | lentification                                          | 49 |
|       | D.1.1          | Requirement identification and source document         | 49 |
|       | D.1.2          | Purpose and objective                                  | 49 |
| D.2   | Expect         | ed response                                            | 49 |
|       | D.2.1          | Scope and content                                      | 49 |
|       | D.2.2          | Special remarks                                        | 50 |
| Annex | E (info        | rmative) Related ISO and other European standards      | 51 |
|       |                |                                                        |    |

#### **Foreword**

This document (EN 16603-10-11:2014) has been prepared by Technical Committee CEN/CLC/TC 5 "Space", the secretariat of which is held by DIN.

This standard (EN 16603-10-11:2014) originates from ECSS-E-ST-10-11C.

This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by January 2015, and conflicting national standards shall be withdrawn at the latest by January 2015.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN [and/or CENELEC] shall not be held responsible for identifying any or all such patent rights.

This document has been developed to cover specifically space systems and has therefore precedence over any EN covering the same scope but with a wider domain of applicability (e.g. : aerospace).

According to the CEN-CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom."

## Introduction

This Standard defines requirements for the integration of the human in the loop for space system products. Thus it provides all requirements to be applied when the presence of the human is planned on-board, or for the nominal or non-nominal interaction of the human with the system, subsystem or equipment to be designed (e.g. a ground based human-computer interface). This Standard identifies requirements for the equipment for implementing a proper manned system that takes into consideration efficiency, effectiveness and wellbeing of the on-board crew, and ground based operators of human-in-the-loop systems. This Standard also identifies the verification methods and related methodologies to be used to confirm compliance to the above mentioned requirements.

This Standard is applicable to both the flight and the ground segment of the space system and refers to the maximum extent possible to already existing HFE non-space domain standards, deviating only when the specific application environment dictates it.

The application of human factors (that in the space domain includes ergonomics) to systems design enhances effectiveness and efficiency, improves human working conditions, and diminishes possible adverse effects of use on human health, safety and performance. Applying ergonomics to the design of systems involves taking account of human capabilities, skills, limitations and needs.

A space system design will consider human factors and especially the two following main aspects from the very beginning of the conceptual phase. Firstly the human being will be correctly taken into account in the design of the hardware, software and operations products and secondly the corresponding organisation and training will be addressed in parallel to the design of the hardware and software.

#### This standard provides:

• a set of requirements for a human centred design process applied to a space system compatible with the ISO Standard 13407:1999 - Human-centred design processes for interactive systems.

A planned accompanying Handbook will provide:

 a tailoring guide of the existing standard - ISO STD 17399:2003 previously known as NASA STD 3000 "Space systems - Man-systems integration".

A key issue of the human centred design approach is the involvement of the stakeholders from the beginning and continuously throughout the project. Benefits of a human centred design include increased productivity, enhanced

quality of work, reductions in support and training costs, and improved user satisfaction. This approach aims to help those responsible for managing hardware and software design processes as well as planning for operations to identify and plan effective and timely human-centred design activities. It complements existing design approaches and methods.

NOTE The customer's total cost of ownership will be dramatically reduced if HFE practices are well integrated into all project phases, from the very beginning.

# 1 Scope

This Standard forms part of the System engineering branch of the Engineering area of the ECSS system. As such it is intended to assist in the consistent application of human factors engineering to space products by specifying normative provisions for methods, data and models to the problem of ensuring crew safety, well being, best performance, and problem avoidance in space system and payload operations.

This Standard ECSS-E-ST-10-11 belongs to the human factors discipline, as identified in ECSS-E-ST-10, and defines the human factors engineering and ergonomics requirements applicable to elements and processes.

This Standard is applicable to all flight and ground segments for the integration of the human in the loop for space system (this includes hardware and software or a combination of the two) products.

When viewed in a specific project context, the requirements defined in this Standard should be tailored to match the genuine requirements of a particular profile and circumstances of a project.

This standard may be tailored for the specific characteristics and constraints of a space project in conformance with ECSS-S-ST-00.

# Normative references

The following normative documents contain provisions which, through reference in this text, constitute provisions of this ECSS Standard. For dated references subsequent amendments to, or revisions of any of these publications do not apply. However, parties to agreements based on this ECSS Standard are encouraged to investigate the possibility of applying the most recent editions of the normative documents indicated below. For undated references the latest edition of the publication referred to applies.

| EN reference   | Reference in text | Title                                                             |
|----------------|-------------------|-------------------------------------------------------------------|
| EN 16601-00-01 | ECSS-S-ST-00-01   | ECSS system — Glossary of terms                                   |
| EN 16603-10-06 | ECSS-E-ST-10-06   | Space engineering – Technical specification                       |
| EN 16603-34    | ECSS-E-ST-34      | Space engineering – Environmental control and life support (ECLS) |
| EN 16603-70    | ECSS-E-ST-70      | Space engineering – Ground systems and operations                 |

## koniec náhľadu – text ďalej pokračuje v platenej verzii STN