STN	Meracie relé a ochranné zariadenia. Časť 121: Funkčné požiadavky na dištančnú ochranu.	STN EN 60255-121
		35 3410

Táto norma obsahuje anglickú verziu európskej normy. This standard includes the English version of the European Standard.

Táto norma bola oznámená vo Vestníku ÚNMS SR č. 01/15

Obsahuje: EN 60255-121:2014, IEC 60255-121:2014

119904

Úrad pre normalizáciu, metrológiu a skúšobníctvo SR, odbor SÚTN, 2015 Podľa zákona č. 264/1999 Z. z. v znení neskorších predpisov sa môžu slovenské technické normy rozmnožovať a rozširovať iba so súhlasom Úradu pre normalizáciu, metrológiu a skúšobníctvo SR.

EUROPEAN STANDARD NORME EUROPÉENNE

EN 60255-121

EUROPÄISCHE NORM

July 2014

ICS 29.120.70

English Version

Measuring relays and protection equipment - Part 121: Functional requirements for distance protection (IEC 60255-121:2014)

Relais de mesure et dispositifs de protection - Partie 121: Exigences fonctionnelles pour protection de distance (CEI 60255-121:2014) Messrelais und Schutzeinrichtungen - Teil 121: Funktionsanforderungen für den Distanzschutz (IEC 60255-121:2014)

This European Standard was approved by CENELEC on 2014-04-11. CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.

Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CENELEC member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CENELEC member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.

CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom.

European Committee for Electrotechnical Standardization Comité Européen de Normalisation Electrotechnique Europäisches Komitee für Elektrotechnische Normung

CEN-CENELEC Management Centre: Avenue Marnix 17, B-1000 Brussels

© 2014 CENELEC All rights of exploitation in any form and by any means reserved worldwide for CENELEC Members.

Foreword

The text of document 95/319/FDIS, future edition 1 of IEC 60255-121, prepared by IEC/TC 95 "Measuring relays and protection equipment" was submitted to the IEC-CENELEC parallel vote and approved by CENELEC as EN 60255-121:2014.

The following dates are fixed:

- latest date by which the document has to be implemented at (dop) 2015-01-11 national level by publication of an identical national standard or by endorsement
- latest date by which the national standards conflicting with (dow) 2017-04-11 the document have to be withdrawn

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CENELEC [and/or CEN] shall not be held responsible for identifying any or all such patent rights.

Endorsement notice

The text of the International Standard IEC 60255-121:2014 was approved by CENELEC as a European Standard without any modification.

Annex ZA (normative)

Normative references to international publications with their corresponding European publications

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

NOTE 1 When an International Publication has been modified by common modifications, indicated by (mod), the relevant EN/HD applies.

NOTE 2 Up-to-date information on the latest versions of the European Standards listed in this annex is available here: www.cenelec.eu.

Publication	<u>Year</u>	Title	<u>EN/HD</u>	<u>Year</u>
IEC 60050	series	International electrotechnical vocabulary	-	-
IEC 60255-1	-	Measuring relays and protection equipment Part 1: Common requirements	EN 60255-1	-
IEC 61850	series	Communication networks and systems for power utility automation	EN 61850	series
IEC 61869-2	2012	Instrument transformers Part 2: Additional requirements for current transformers	EN 61869-2	2012
IEC 61869-5	2011	Instrument transformers Part 5: Additional requirements for capacitor voltage transformers	EN 61869-5	2011

IEC 60255-121

Edition 1.0 2014-03

INTERNATIONAL STANDARD

NORME INTERNATIONALE

Measuring relays and protection equipment – Part 121: Functional requirements for distance protection

Relais de mesure et dispositifs de protection – Partie 121: Exigences fonctionnelles pour protection de distance

THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2014 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord écrit de l'IEC ou du Comité national de l'IEC du pays du demandeur. Si vous avez des questions sur le copyright de l'IEC ou si vous désirez obtenir des droits supplémentaires sur cette publication, utilisez les coordonnées ci-après ou contactez le Comité national de l'IEC de votre pays de résidence.

IEC Central Office	Tel.: +41 22 919 02 11
3, rue de Varembé	Fax: +41 22 919 03 00
CH-1211 Geneva 20	info@iec.ch
Switzerland	www.iec.ch

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigenda or an amendment might have been published.

IEC Catalogue - webstore.iec.ch/catalogue

The stand-alone application for consulting the entire bibliographical information on IEC International Standards, Technical Specifications, Technical Reports and other documents. Available for PC, Mac OS, Android Tablets and iPad.

IEC publications search - www.iec.ch/searchpub

The advanced search enables to find IEC publications by a variety of criteria (reference number, text, technical committee,...). It also gives information on projects, replaced and withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublished

Stay up to date on all new IEC publications. Just Published details all new publications released. Available online and also once a month by email.

Electropedia - www.electropedia.org

The world's leading online dictionary of electronic and electrical terms containing more than 30 000 terms and definitions in English and French, with equivalent terms in 14 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online.

IEC Glossary - std.iec.ch/glossary

More than 55 000 electrotechnical terminology entries in English and French extracted from the Terms and Definitions clause of IEC publications issued since 2002. Some entries have been collected from earlier publications of IEC TC 37, 77, 86 and CISPR.

IEC Customer Service Centre - webstore.iec.ch/csc

If you wish to give us your feedback on this publication or need further assistance, please contact the Customer Service Centre: csc@iec.ch.

A propos de l'IEC

La Commission Electrotechnique Internationale (IEC) est la première organisation mondiale qui élabore et publie des Normes internationales pour tout ce qui a trait à l'électricité, à l'électronique et aux technologies apparentées.

A propos des publications IEC

Le contenu technique des publications IEC est constamment revu. Veuillez vous assurer que vous possédez l'édition la plus récente, un corrigendum ou amendement peut avoir été publié.

Catalogue IEC - webstore.iec.ch/catalogue

Application autonome pour consulter tous les renseignements bibliographiques sur les Normes internationales, Spécifications techniques, Rapports techniques et autres documents de l'IEC. Disponible pour PC, Mac OS, tablettes Android et iPad.

Recherche de publications IEC - www.iec.ch/searchpub

La recherche avancée permet de trouver des publications IEC en utilisant différents critères (numéro de référence, texte, comité d'études,...). Elle donne aussi des informations sur les projets et les publications remplacées ou retirées.

IEC Just Published - webstore.iec.ch/justpublished

Restez informé sur les nouvelles publications IEC. Just Published détaille les nouvelles publications parues. Disponible en ligne et aussi une fois par mois par email.

Electropedia - www.electropedia.org

Le premier dictionnaire en ligne de termes électroniques et électriques. Il contient plus de 30 000 termes et définitions en anglais et en français, ainsi que les termes équivalents dans 14 langues additionnelles. Egalement appelé Vocabulaire Electrotechnique International (IEV) en ligne.

Glossaire IEC - std.iec.ch/glossary

Plus de 55 000 entrées terminologiques électrotechniques, en anglais et en français, extraites des articles Termes et Définitions des publications IEC parues depuis 2002. Plus certaines entrées antérieures extraites des publications des CE 37, 77, 86 et CISPR de l'IEC.

Service Clients - webstore.iec.ch/csc

Si vous désirez nous donner des commentaires sur cette publication ou si vous avez des questions contactez-nous: csc@iec.ch.

IEC 60255-121

Edition 1.0 2014-03

INTERNATIONAL STANDARD

NORME INTERNATIONALE

Measuring relays and protection equipment – Part 121: Functional requirements for distance protection

Relais de mesure et dispositifs de protection – Partie 121: Exigences fonctionnelles pour protection de distance

INTERNATIONAL ELECTROTECHNICAL COMMISSION

COMMISSION ELECTROTECHNIQUE INTERNATIONALE

ICS 29.120.70

ISBN 978-2-8322-1399-5

Warning! Make sure that you obtained this publication from an authorized distributor. Attention! Veuillez vous assurer que vous avez obtenu cette publication via un distributeur agréé.

 Registered trademark of the International Electrotechnical Commission Marque déposée de la Commission Electrotechnique Internationale

CONTENTS

FO	REWOR	D		9
1	Scope.			11
2	Normat	ive referend	ces	11
3	Terms a	and definition	ons	12
4	Specific	cation of the	e function	13
	4 1	General		13
	4.2	Input ene	raizina quantities/eneraizina quantities	13
	4.3	Binary inr	put signals	
	4 4	Functiona	al logic	15
		4.4.1	Faulted phase identification	
		4.4.2	Directional signals	
		4.4.3	Distance protection function characteristics	
		4.4.4	Distance protection zone timers	
	4.5	Binarv ou	tout signals	
	-	4.5.1	General	16
		4.5.2	Start (pickup) signals	16
		4.5.3	Operate signals	
		4.5.4	Other binary output signals	17
	4.6	Additiona	I influencing functions/conditions	17
		4.6.1	General	17
		4.6.2	Inrush current	17
		4.6.3	Switch onto fault/trip on reclose	17
		4.6.4	Voltage transformer (VT) signal failure (loss of voltage)	17
		4.6.5	Power swings	18
		4.6.6	Behavior during frequencies outside of the operating range	18
5	Perform	nance speci	ifications	18
	5.1	General		
	5.2	Effective	and operating ranges	
	5.3	Basic cha	racteristic accuracy under steady state conditions	19
		5.3.1	General	19
		5.3.2	Determination of accuracy related to time delay setting	19
		5.3.3	Disengaging time	20
	5.4	Dynamic	performance	20
		5.4.1	General	20
		5.4.2	Transient overreach (TO)	20
		5.4.3	Operate time and transient overreach (SIR diagrams)	21
		5.4.4	Operate time and transient overreach (CVT-SIR diagrams)	21
		5.4.5	Typical operate time	21
	5.5	Performa	nce with harmonics	22
		5.5.1	General	22
		5.5.2	Steady-state harmonics tests	23
		5.5.3	Transient LC oscillation tests	23
	5.6	Performa	nce during frequency deviation	23
		5.6.1	General	23
		5.6.2	Steady state testing during frequency deviation	23
		5.6.3	Transient testing during frequency deviation	23
	5.7	Double in	feed tests	24

IEC 60255-121:2014 © IEC 2014 - 3 -

		5.7.1	General	24
		5.7.2	Single line, double infeed system	24
		5.7.3	Double line, double infeed system	24
	5.8	Instrument	transformer (CT, VT and CVT) requirements	25
		5.8.1	General	25
		5.8.2	CT requirements	25
6	Functio	nal tests		29
-	6 1	General		20
	6.2	Rated free	uency characteristic accuracy tests	23
	0.2		Coporal	29
		0.2.1	Basis characteristic accuracy under stoody state conditions	20
		0.2.2	Basic characteristic accuracy under steady state conditions	30
		0.2.3	Basic directional accuracy under steady state conditions	43
		0.2.4	Determination of accuracy related to time delay setting	48
		6.2.5	Determination and reporting of the disengaging time	48
	6.3	Dynamic p	erformance	50
		6.3.1	General	50
		6.3.2	Dynamic performance: operate time and transient overreach (SIR diagrams)	51
		6.3.3	Dynamic performance: operate time and transient overreach	61
		634	Dynamic performance: transient overreach tests	65
		635	Dynamic performance: typical operate time	69
	64	Derforman	ce with harmonics	03
	0.4		Steady state harmonics tests	74 74
		0.4.1	Transient excillation tests (network simulation L.C)	/ 4
	0.5	0.4.2 Denfermen	Transient oscillation tests (network simulation L-C)	75
	6.5	Performan	Ce during off-nominal frequency	82
		6.5.1	Steady state frequency deviation tests	82
		6.5.2	I ransient frequency deviation tests	85
	6.6	Double info	eed tests	90
		6.6.1	Double infeed tests for single line	90
		6.6.2	Double infeed tests for parallel lines (without mutual inductance)	96
		6.6.3	Reporting of double infeed test results	. 100
7	Docume	entation req	uirements	. 101
	7.1	Type test r	eport	. 101
	7.2	Documenta	ation	. 101
Ann	ex A (inf	ormative) I	mpedance characteristics	102
,	Δ 1			102
	A. I		Conorol	102
		A.I.I	Nen directional circular characteristic	102
		A.1.2		. 102
		A.1.3	MHO characteristic	. 102
		A.1.4	Quadrilateral/polygonal	. 104
	A.2	Example c	naracteristics	. 106
		A.2.1	General	. 106
		A.2.2	Non-directional circular characteristic (ohm)	. 106
		A.2.3	Reactive reach line characteristic	. 106
		A.2.4	MHO characteristic	. 107
		A.2.5	Resistive and reactive intersecting lines characteristic	. 107
		A.2.6	Offset MHO characteristic	. 108

Annex B (informative) Informative guide for the behaviour of timers in distance protection zones for evolving faults	. 110
Annex C (normative) Setting example	. 112
Annex D (normative) Calculation of mean, median and mode	. 115
D.1 Mean	. 115
D.2 Median	. 115
D.3 Mode	. 115
D.4 Example	. 115
Annex E (informative) CT saturation and influence on the performance of distance relays	. 116
Annex F (informative) Informative guide for testing distance relays based on CT requirements specification	. 119
F.1 General	. 119
F.2 Test data	. 120
F.3 CT data and CT model	. 121
Annex G (informative) Informative guide for dimensioning of CTs for distance protection	. 125
G.1 General	. 125
G.2 Example 1	. 126
G.3 Example 2	. 128
Annex H (normative) Calculation of relay settings based on generic point P expressed in terms of voltage and current	. 131
H.1 Settings for quadrilateral/polygonal characteristic	. 131
H.2 Settings for MHO characteristic	. 133
Annex I (normative) Ramping methods for testing the basic characteristic accuracy	. 134
I.1 Relationship between simulated fault impedance and analog quantities	. 134
I.2 Pre-fault condition	. 134
I.3 Phase to earth faults	. 134
I.4 Phase to phase faults.	. 136
I.5 Ramps in the impedance plane	. 139
I.5.1 Pseudo-continuous ramp	. 139
I.5.2 Ramp of shots	. 140
Annex J (normative) Definition of fault inception angle	. 143
Annex K (normative) Capacitive voltage instrument transformer model	. 145
K.1 General	. 145
K.2 Capacitor voltage transformer (CVT)	. 145
Figure 1 – Simplified distance protection function block diagram	14
Figure 2 – Basic accuracy specification of an operating characteristic	19
Figure 3 – Basic angular accuracy specifications of directional lines	20
Figure 4 – SIR diagram – Short line average operate time	22
Figure 5 – Fault positions to be considered for specifying the CT requirements	26
Figure 6 – Test procedure for basic characteristic accuracy	31
Figure 7 – Calculated test points A, B and C based on the effective range of U and I	32
Figure 8 – Modified points B' and C' based on the limited setting range	32
Figure 9 – Position of test points A, B, C, D and E in the effective range of U and I	33
Figure 10 – Position of test points A, B', C', D and E in the effective range of U and I	33

IEC	60255-121:2014 © IEC 2014	– 5 –

Figure 11 – Quadrilateral characteristic showing ten test points	. 34
Figure 12 – Quadrilateral characteristic showing test ramps	.35
Figure 13 – Quadrilateral characteristic showing accuracy limits	.36
Figure 14 – Quadrilateral/polygonal characteristic showing accuracy limits	.37
Figure 15 – MHO characteristic showing nine test points	. 37
Figure 16 – MHO characteristic showing test ramps	. 38
Figure 17 – Accuracy limits for MHO characteristic	. 39
Figure 18 – Basic directional element accuracy tests	.44
Figure 19 – Directional element accuracy tests in the second quadrant	.45
Figure 20 – Directional element accuracy tests in the second quadrant	.46
Figure 21 – Directional element accuracy tests in the fourth quadrant	.46
Figure 22 – Directional test accuracy lines in the fourth quadrant	.47
Figure 23 – Position of the three-phase fault for testing the disengaging time	.49
Figure 24 – Sequence of events for testing the disengaging time	. 50
Figure 25 – Power system network with zero load transfer	.51
Figure 26 – Dynamic performance: operate time and dynamic overreach (SIR diagram)	.55
Figure 27 – SIR diagram for short line: minimum operate time	. 56
Figure 28 – SIR diagram for short line: average operate time	. 57
Figure 29 – SIR diagram for short line: maximum operate time	.57
Figure 30 – Dynamic performance tests (SIR diagrams)	. 59
Figure 31 – SIR diagram for long line: minimum operate time	.61
Figure 32 – SIR diagram for long line: average operate time	.62
Figure 33 – SIR diagram for long line: maximum operate time	.62
Figure 34 – Dynamic performance: operate time and dynamic overreach (CVT-SIR	64
Giagram)	.04
Figure 35 – CVT-SIR diagram for short line: everage energies time	.00
Figure 36 – CVT-SIR diagram for a short line: average operate time.	.00
Figure 37 – CVT-SIR diagram for a short line. maximum operate time	.07
Figure 38 – Fault statistics for typical operate time	.70
Figure 39 – Frequency distribution of operate time	.73
Figure 40 – Ramping lest for harmonics	.75
Figure 41 – Steady-state harmonics test	. / /
Figure 42 – Simulated power system network	.78
Figure 43 – Flowchart of transient oscillation tests	.79
Figure 44 – Simulated voltages (U_{L1} , U_{L2} , U_{L3}) and currents (I_{L1} , I_{L2} , I_{L3})	.81
Figure 45 – Transient oscillation tests – Operate time	.82
Figure 46 – Test points for quadrilateral characteristics	.83
Figure 47 – Test points for MHO characteristic	.83
Figure $48 - 1$ est ramp direction for quadrilateral characteristic	.83
Figure 49 – Test ramp direction for MHO characteristic	.84
Figure 50 – Steady-state frequency deviation tests	.86
Figure 51 – Short line model for frequency deviation test	.87
Figure 52 – Flowchart of transient frequency deviation tests	.89

Figure 53 – SIR diagrams for frequency deviation tests – average operate time	90
Figure 54 – Network model for single line tests	91
Figure 55 – Line to earth fault	92
Figure 56 – Line to line fault	92
Figure 57 – Line to line to earth fault	92
Figure 58 – Three-phase fault	93
Figure 59 – Network model for parallel lines tests	98
Figure 60 – Network model for current reversal test	99
Figure A.1 – Non-directional circular characteristic with directional supervision	102
Figure A.2 – MHO characteristic	103
Figure A.3 – Quadrilateral/polygonal characteristics	104
Figure A.4 – Non-directional circular characteristic (ohm)	106
Figure A.5 – Reactive reach line characteristic	107
Figure A.6 – MHO characteristics	107
Figure A.7 – Resistive and reactive intersecting lines characteristics	108
Figure A.8 – Offset MHO	108
Figure B.1 – The same fault type evolving from time delayed zone 3 (position 1) into time delayed zone 2 (position 2) after 200 ms	110
Figure B.2 – Phase to earth fault in time delayed zone 3 (position 1) evolving into three-phase fault in the same zone (position 2) after 200 ms	111
Figure C.1 – Setting example for a radial feeder	112
Figure C.2 – Phase to earth fault (LN)	113
Figure C.3 – Phase to phase fault (LL)	114
Figure E.1 – Fault positions to be considered for specifying the CT requirements	117
Figure F.1 – Fault positions to be considered	119
Figure F.2 – Double source network	120
Figure F.3 – Magnetization curve for the basic CT	122
Figure F.4 – Secondary current at the limit of saturation caused by AC component with no remanent flux in the CT	123
Figure F.5 – Secondary current in case of maximum DC offset	123
Figure G.1 – Distance relay example 1	126
Figure G.2 – Distance relay example 2	128
Figure H.1 – Quadrilateral/polygonal characteristic showing test point P on the reactive reach line	131
Figure H.2 – Quadrilateral distance protection function characteristic showing test point P on the resistive reach line	132
Figure H.3 – MHO characteristic showing test point P	133
Figure I.1 – Three-line diagram showing relay connections and L1N fault	135
Figure I.2 – Voltage and current phasors for L1N fault	135
Figure I.3 – Voltages and currents for L1N fault, constant fault current	136
Figure I.4 – Voltages and currents for L1N fault, constant fault voltage	136
Figure I.5 – Three-line diagram showing relay connections and L1L2 fault	137
Figure I.6 – Voltage and current phasors for L1L2 fault	138
Figure I.7 – Voltages and currents for L1L2 fault, constant fault current	138
Figure I.8 – Voltages and currents for L1L2 fault, constant fault voltage	139

Figure I.9 – Pseudo-continuous ramp distance relay characteristic on an impedance plane	. 140
Figure I.10 – Pseudo-continuous ramp showing impedance step change and the time step	140
Figure I.11 – Ramp of shots distance relay characteristic on an impedance plane	
Figure I.12 – Ramp of shots showing impedance step change and the time step	. 142
Figure I.13 – Ramp of shots with binary search algorithm	. 142
Figure J.1 – Graphical definition of fault inception angle	. 143
Figure K.1 – CVT equivalent electrical circuit	. 145
Figure K.2 – Transient response of the 50 Hz version of the CVT model	. 147
Table 1 – Example of effective and operating ranges of distance protection	18
Table 2 – Recommended levels of remanence in the optional cases when remanence	
is considered	27
Table 3 – Basic characteristic accuracy for various points (quadrilateral/polygonal)	42
Table 4 – Overall basic characteristic accuracy (quadrilateral/polygonal)	42
Table 5 – Basic characteristics accuracy for various points (MHO)	42
Table 6 – Overall basic characteristic accuracy (MHO)	42
Table 7 – Basic directional accuracy for various fault types	47
Table 8 – Basic directional accuracy $e_{\alpha \chi}$	47
Table 9 – Results of disengaging time for all the tests	50
Table 10 – Short line SIR and source impedance for selected rated current and frequency	53
Table 11 – Short line SIR and source impedances for other rated current and frequency	54
Table 12 – Long line SIR and source impedances for selected rated current and frequency	59
Table 13 – Long line SIR and source impedances for other rated current and frequency	60
Table 14 – Short line CVT-SIR source impedance	63
Table 15 – Transient overreach table for short line	68
Table 16 – Transient overreach table for long line	68
Table 17 – Transient overreach table for short line with CVTs	69
Table 18 – Typical operate time	71
Table 19 – Typical operate time	71
Table 20 – Typical operate time	72
Table 21 – Typical operate time (mode, median, mean)	73
Table 22 – Steady state harmonics test	75
Table 23 – Capacitance values	78
Table 24 – Quadrilateral/polygonal basic characteristic accuracy at f_{min} and f_{max}	85
Table 25 – MHO basic characteristic accuracy at <i>f</i> _{min} and <i>f</i> _{max}	85
Table 26 – Tests without pre-fault load	94
Table 27 – Tests with pre-fault load	95
Table 28 – Current reversal test	98
Table 29 – Evolving faults (only one line affected)	99
Table 30 – Evolving faults (both lines affected)	. 100
Table 31 – Double infeed test results	. 101

Table F.1 – Magnetization curve data	122
Table G.1 – Fault currents	127
Table G.2 – Fault currents	128
Table J.1 – Fault type and reference voltage	
Table K.1 – Parameter values for the 50 Hz version of the CVT model	
Table K.2 – Parameter values for the 60 Hz version of the CVT model	

IEC 60255-121:2014 © IEC 2014

INTERNATIONAL ELECTROTECHNICAL COMMISSION

MEASURING RELAYS AND PROTECTION EQUIPMENT –

Part 121: Functional requirements for distance protection

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 60255-121 has been prepared by IEC technical committee 95: Measuring relays and protection equipment.

This standard cancels and replaces IEC 60255-16.

The text of this standard is based on the following documents:

FDIS	Report on voting
95/319/FDIS	95/321/RVD

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

- 10 -

IEC 60255-121:2014 © IEC 2014

A list of all parts in the IEC 60255 series, published under the general title *Measuring relays and protection equipment,* can be found on the IEC website.

The committee has decided that the contents of this publication will remain unchanged until the stability date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

IEC 60255-121:2014 © IEC 2014

MEASURING RELAYS AND PROTECTION EQUIPMENT -

Part 121: Functional requirements for distance protection

1 Scope

This part of IEC 60255 specifies minimum requirements for functional and performance evaluation of distance protection function typically used in, but not limited to, line applications for effectively earthed, three-phase power systems. This standard also defines how to document and publish performance tests.

This standard covers distance protection function whose operating characteristic can be defined on an impedance plane and includes specification of the protection function, measurement characteristics, phase selection, directionality, starting and time delay characteristics.

The test methodologies for verifying performance characteristics and accuracy are included in this standard. The standard defines the influencing factors that affect the accuracy under steady state conditions and performance characteristics during dynamic conditions. It also includes the instrument transformer requirements for the protection function.

The distance protection functions covered by this standard are as follows:

	IEEE/ANSI C37.2 Function numbers	IEC 61850-7-4 Logical nodes
Phase distance protection	21	PDIS
Earth (ground) distance protection	21G	PDIS

This standard does not specify the functional description of additional features often associated with digital distance relays such as power swing blocking (PSB), out of step tripping (OST), voltage transformer (VT) supervision, switch onto fault (SOTF), trip on reclose (TOR), the logic for cross country faults in not effectively earthed networks, and trip conversion logic. Only their influence on the distance protection function is covered in this standard. The protection of series-compensated lines is beyond the scope of this standard.

The general requirements for measuring relays and protection equipment are defined in IEC 60255-1.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60050 (all parts), International Electrotechnical Vocabulary (available at http://www.electropedia.org)

IEC 60255-1, Measuring relays and protection equipment – Part 1: Common requirements

IEC 61850 (all parts), Communication networks and systems for power utility automation

IEC 61869-2:2012, Instrument transformers – Part 2: Additional requirements for current transformers

IEC 61869-5:2011, Instrument transformers – Part 5: Additional requirements for capacitor voltage transformers

koniec náhľadu – text ďalej pokračuje v platenej verzii STN