

Korózia kovov a zliatin. Korózia v umelej atmosfére. Zrýchlená korózna skúška zahrňujúca vystavenie vlhkostnému cyklu za riadených podmienok a periodický postrek soľným roztokom (ISO 16701: 2015).

STN EN ISO 16701

03 8220

Corrosion of metals and alloys - Corrosion in artificial atmosphere - Accelerated corrosion test involving exposure under controlled conditions of humidity cycling and intermittent spraying of a salt solution (ISO 16701:2015)

Táto norma obsahuje anglickú verziu európskej normy. This standard includes the English version of the European Standard.

Táto norma bola oznámená vo Vestníku ÚNMS SR č. 09/15

Obsahuje: EN ISO 16701:2015, ISO 16701:2015

Oznámením tejto normy sa ruší STN EN ISO 16701 (03 8220) z augusta 2008 STN EN ISO 16701: 2015

EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM

EN ISO 16701

May 2015

ICS 77.060

Supersedes EN ISO 16701:2008

English Version

Corrosion of metals and alloys - Corrosion in artificial atmosphere - Accelerated corrosion test involving exposure under controlled conditions of humidity cycling and intermittent spraying of a salt solution (ISO 16701:2015)

Corrosion des métaux et alliages - Corrosion en atmosphère artificielle - Essai de corrosion accélérée comprenant des expositions sous conditions contrôlées à des cycles d'humidité et à des vaporisations intermittentes de solution saline (ISO 16701:2015)

Korrosion von Metallen und Legierungen - Korrosion in künstlicher Atmosphäre - Beschleunigte Korrosionsprüfungen unter zyklischer Einwirkung von Feuchte und intermittierendem Versprühen einer Salzlösung unter kontrollierten Bedingungen (ISO 16701:2015)

This European Standard was approved by CEN on 16 April 2015.

CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom.

EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG

CEN-CENELEC Management Centre: Avenue Marnix 17, B-1000 Brussels

EN ISO 16701:2015 (E)

Contents	Page
Foreword	3

EN ISO 16701:2015 (E)

Foreword

This document (EN ISO 16701:2015) has been prepared by Technical Committee ISO/TC 156 "Corrosion of metals and alloys" in collaboration with Technical Committee CEN/TC 262 "Metallic and other inorganic coatings" the secretariat of which is held by BSI.

This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by November 2015, and conflicting national standards shall be withdrawn at the latest by November 2015.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN [and/or CENELEC] shall not be held responsible for identifying any or all such patent rights.

This document supersedes EN ISO 16701:2008.

According to the CEN-CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom.

Endorsement notice

The text of ISO 16701:2015 has been approved by CEN as EN ISO 16701:2015 without any modification.

INTERNATIONAL STANDARD

ISO 16701

Second edition 2015-05-15

Corrosion of metals and alloys — Corrosion in artificial atmosphere — Accelerated corrosion test involving exposure under controlled conditions of humidity cycling and intermittent spraying of a salt solution

Corrosion des métaux et alliages — Corrosion en atmosphère artificielle — Essai de corrosion accélérée comprenant des expositions sous conditions contrôlées à des cycles d'humidité et à des vaporisations intermittentes de solution saline

STN EN ISO 16701: 2015

ISO 16701:2015(E)

COPYRIGHT PROTECTED DOCUMENT

 $\, @ \,$ ISO 2015, Published in Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Ch. de Blandonnet 8 • CP 401 CH-1214 Vernier, Geneva, Switzerland Tel. +41 22 749 01 11 Fax +41 22 749 09 47 copyright@iso.org www.iso.org

Con	itents	Page
Forev	word	iv
Intro	duction	v
1	Scope	1
2	Normative references	1
3	Reagent	2
4	Apparatus 4.1 Climate chamber 4.2 Spraying device 4.3 System for forced drying	2 2 3
5	Test objects	3
6	Procedure 6.1 Arrangement of the test objects 6.2 Exposure conditions of test cycle 6.3 Duration of test 6.4 Treatment of test objects after test	4 4 6
7	Evaluation of results	6
8	Test report	7
Anne	ex A (informative) Recommended periods of testing	8
Anne	ex B (informative) Suitable design of test apparatus with spraying device	9
	ex C (informative) Method for evaluation of corrosivity of test	
	ography	

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the WTO principles in the Technical Barriers to Trade (TBT) see the following URL: Foreword - Supplementary information

The committee responsible for this document is ISO/TC 156, Corrosion of metals and alloys.

This second edition cancels and replaces the first edition (ISO 16701:2003), of which it constitutes a minor revision.

Introduction

Atmospheric corrosion of metallic materials, with or without corrosion protection, is influenced by many environmental factors, the importance of which might vary with the type of metallic material and with the type of environment. It is therefore not possible to design a laboratory corrosion test in such a way that the full complexity of real in-service conditions are taken into account. Acceleration (forced conditions) as such can also have a negative impact on the correlation to field performance. Nevertheless, tests with humidity cycling and only intermittent exposure to salt solution will generally provide a better correlation to field performance than tests using continuous salt spray.

This International Standard was developed in the automotive context, where the major contributor to corrosion is the use of winter time de-icing road salt in cool/cold temperate areas around the world, here as sodium chloride compounds acting in cyclic humidity conditions. The test procedure is moderately forced by humidity and salt and intended to be applicable for quality assurance of the metals and corrosion protections typically encountered in motor vehicles. The method can have relevance also in other areas of application, provided representing similar climatic conditions with an influence of sodium chloride compounds.

Corrosion of metals and alloys — Corrosion in artificial atmosphere — Accelerated corrosion test involving exposure under controlled conditions of humidity cycling and intermittent spraying of a salt solution

1 Scope

This International Standard specifies the test method, the reagents, and the procedure to be used in an accelerated atmospheric corrosion test constituting a 6 h exposure to a slightly acidified solution of 1 % NaCl twice weekly, followed by a condition of controlled humidity cycling between 95 % RH and 50 % RH at a constant temperature of 35 °C.

This International Standard does not specify the dimensions of the tests specimens, the exposure period to be used for a particular product, or the interpretation of the results. Such details are provided in the appropriate product specifications.

The accelerated laboratory corrosion test applies to

- metals and their alloys,
- metallic coatings (anodic or cathodic),
- chemical conversion coatings, and
- organic coatings on metallic materials.

NOTE 1 If testing low-alloy stainless steels, especially austenitic grades, according to this International Standard, there is a risk of receiving exaggerated pitting, not representative for most service environments.

NOTE 2 This International Standard is not suitable for testing of wax and oil based rust protection agents, due to the constantly elevated temperature condition of the test.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 4628-1, Paints and varnishes — Evaluation of degradation of coatings — Designation of quantity and size of defects, and of intensity of uniform changes in appearance — Part 1: General introduction and designation system

ISO 4628-2, Paints and varnishes — Evaluation of degradation of coatings — Designation of quantity and size of defects, and of intensity of uniform changes in appearance — Part 2: Assessment of degree of blistering

ISO 4628-4, Paints and varnishes — Evaluation of degradation of coatings — Designation of quantity and size of defects, and of intensity of uniform changes in appearance — Part 4: Assessment of degree of cracking

ISO 4628-5, Paints and varnishes — Evaluation of degradation of coatings — Designation of quantity and size of defects, and of intensity of uniform changes in appearance — Part 5: Assessment of degree of flaking

ISO 8407, Corrosion of metals and alloys — Removal of corrosion products from corrosion test specimens

ISO 10289, Methods for corrosion testing of metallic and other inorganic coatings on metallic substrates — Rating of test specimens and manufactured articles subjected to corrosion tests

koniec náhľadu – text ďalej pokračuje v platenej verzii STN