

Cestné vozidlá. Sieťové komunikačné rozhranie vo vozidlách. Časť 3: Požiadavky na fyzickú vrstvu a vrstvu dátového spoja (ISO 15118-3: 2015).

STN EN ISO 15118-3

30 0611

Road vehicles - Vehicle to grid Communication interface - Part 3: Physical and data link layer requirements (ISO 15118-3:2015)

Táto norma obsahuje anglickú verziu európskej normy. This standard includes the English version of the European Standard.

Táto norma bola oznámená vo Vestníku ÚNMS SR č. 10/16

Obsahuje: EN ISO 15118-3:2016, ISO 15118-3:2015

EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM

EN ISO 15118-3

April 2016

ICS 43.120

English Version

Road vehicles - Vehicle to grid Communication interface - Part 3: Physical and data link layer requirements (ISO 15118-3:2015)

Véhicules routiers - Interface de communication entre véhicule et réseau électrique - Partie 3: Exigences relatives à la couche physique et à la couche liaison de données (ISO 15118-3:2015) Straßenfahrzeuge - Kommunikationsschnittstelle zwischen Fahrzeug und Ladestation - Teil 3: Anforderungen an physikalische- und Datenverbindungsschnittstelle (ISO 15118-3:2015)

This European Standard was approved by CEN on 21 February 2016.

CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom.

EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG

CEN-CENELEC Management Centre: Avenue Marnix 17, B-1000 Brussels

EN ISO 15118-3:2016 (E)

Contents	Page
Francisco formand	2
European foreword	

European foreword

The text of ISO 15118-3:2015 has been prepared by Technical Committee ISO/TC 22 "Road vehicles" of the International Organization for Standardization (ISO) and has been taken over as EN ISO 15118-3:2016 by Technical Committee CEN/TC 301 "Road vehicles" the secretariat of which is held by AFNOR.

This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by October 2016, and conflicting national standards shall be withdrawn at the latest by October 2016.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN [and/or CENELEC] shall not be held responsible for identifying any or all such patent rights.

This document has been prepared under a mandate given to CEN by the European Commission and the European Free Trade Association.

According to the CEN-CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom.

Endorsement notice

The text of ISO 15118-3:2015 has been approved by CEN as EN ISO 15118-3:2016 without any modification.

INTERNATIONAL STANDARD

ISO 15118-3

First edition 2015-05-15

Road vehicles — Vehicle to grid communication interface —

Part 3:

Physical and data link layer requirements

Véhicules routiers — Interface de communication entre véhicule et réseau électrique —

Partie 3: Exigences relatives à la couche physique et à la couche liaison de données

ISO 15118-3:2015(E)

COPYRIGHT PROTECTED DOCUMENT

$\, @ \,$ ISO 2015, Published in Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Ch. de Blandonnet 8 • CP 401 CH-1214 Vernier, Geneva, Switzerland Tel. +41 22 749 01 11 Fax +41 22 749 09 47 copyright@iso.org www.iso.org

Contents			
Fore	word		v
Intro	oductio	on	vi
1		e	
2	-	native references	
3			
		ns and definitions	
4	-	bols and abbreviated terms	
5	Conv 5.1	ventions Definition of OSI based services	
	5.2	Requirement structure	
	5.3	Normative references convention	5
6	Syste	em architecture	6
	6.1	Communication layers overview	
	6.2	Definition of high-level communication and basic signalling	
		6.2.2 High-level communication	
	6.3	Identification requirements	
	6.4	System requirements	
		6.4.1 Overview	
		6.4.3 EV	
	6.5	Configuration of a low-layer communication module	
7	Connection coordination		
	7.1	General	
	7.2 7.3	Overview	
	7.3	7.3.1 EVSE side	
		7.3.2 EV side	17
	7.4	Initialization phase	
	7.5	Loss of communication 7.5.1 EVSE side	
		7.5.2 EV side	
	7.6	Sleep mode and wake-up	19
		7.6.1 Entering the sleep mode	
		7.6.2 Wake-up	
	7.7	Plug-out phase	
8	Timi	ings and constants	21
9		ching EV — EVSE process	
	9.1	Overview	22
	9.2	Initialization of matching process	24
	9.3 9.4	Discovery of the connected low-layer communication module	
	9.5	Set-up a logical network	
	9.6	Leave the logical network	
	9.7	Error handling	27
10	EMC	requirements	27
11	Sign	al coupling	27
12	Laye	r 2 interfaces	
	121	Oxygonyioxy	20

STN EN ISO 15118-3: 2016

ISO 15118-3:2015(E)

Biblio	graphy		79
Annex	B (info	rmative) IEEE 1901.2 G3-PLC profile on control pilot line	72
Annex	A (nor	mative) HomePlug Green PHY on control pilot line	30
	12.3	Data link control SAP to layer 3	28
	12.2	Data SAP	28

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the WTO principles in the Technical Barriers to Trade (TBT) see the following URL: Foreword - Supplementary information

The committee responsible for this document is ISO/TC 22, *Road vehicles*, Subcommittee SC 31, *Data communication*.

ISO 15118 consists of the following parts, under the general title *Road vehicles — Vehicle to grid communication interface*:

- Part 1: General information and use-case definition
- Part 2: Network and application protocol requirements
- Part 3: Physical layer and Data Link Layer requirements

The following parts are under preparation:

- Part 4: Network and application protocol conformance test
- Part 5: Physical layer and data link layer conformance test
- Part 6: General information and use-case definition for wireless communication
- Part 7: Network and application protocol requirements for wireless communication
- Part 8: Physical layer and data link layer requirements for wireless communication

Introduction

The pending energy crisis and the necessity to reduce greenhouse gas emissions has led the vehicle manufacturers to a very significant effort to reduce the energy consumption of their vehicles. They are presently developing vehicles partly or completly propelled by electric energy. Thus, vehicles will reduce the dependency on oil, improve the global energy efficiency, and reduce the total CO_2 emissions for road transportation if the electricity is produced from renewable sources. To charge the batteries of such vehicles, specific charging infrastructure is required.

Much of the standardization work on dimensional and electrical specifications of the charging infrastructure and the vehicle interface is already treated in the relevant ISO or IEC groups. However, the question of information transfer between the vehicle and the grid has not been treated sufficiently.

Such communication is beneficial for the optimization of energy resources and energy production systems as vehicles can recharge at the most economic or most energy-efficient instants.

It is also required to develop efficient and convenient payment systems in order to cover the resulting micro-payments. The necessary communication channel might serve in the future to contribute to the stabilization of the electrical grid, as well as to support additional information services required to operate electric vehicles efficiently.

Road vehicles — Vehicle to grid communication interface —

Part 3:

Physical and data link layer requirements

1 Scope

This part of ISO 15118 specifies the requirements of the physical and data link layer for a high-level communication, directly between battery electric vehicles (BEV) or plug-in hybrid electric vehicles (PHEV), termed as EV (electric vehicle) [ISO-1], based on a wired communication technology and the fixed electrical charging installation [Electric Vehicle Supply Equipment (EVSE)] used in addition to the basic signalling, as defined in [IEC-1].

It covers the overall information exchange between all actors involved in the electrical energy exchange. ISO 15118 (all parts) is applicable for manually connected conductive charging.

Only "[IEC-1] modes 3 and 4" EVSEs, with a high-level communication module, are covered by this part of ISO 15118.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 15118-1: 2013, Road vehicles - Vehicle to grid communication interface - Part 1: General information and use-case definition

ISO 15118-2:2014, Road vehicles — Vehicle to grid communication interface — Part 2: Network and application protocol requirements

IEC 61851-1:2010, Electric vehicle conductive charging system — Part 1: General requirements

IEC/TS 62763:2013, Pilot function through a control pilot circuit using PWM (pulse width modulation) and a control pilot wire

koniec náhľadu – text ďalej pokračuje v platenej verzii STN