| STN | Vodné turbíny, akumulačné čerpadlá a čerpadlové
turbíny
Obnova a zlepšovanie funkčných vlastností | STN
EN 62256 | |-----|---|-----------------| | | | 08 5015 | Hydraulic turbines, storage pumps and pump-turbines - Rehabilitation and performance improvement Táto norma obsahuje anglickú verziu európskej normy. This standard includes the English version of the European Standard. Táto norma bola oznámená vo Vestníku ÚNMS SR č. 12/17 Obsahuje: EN 62256:2017, IEC 62256:2017 Oznámením tejto normy sa od 04.07.2020 ruší STN EN 62256 (08 5015) z decembra 2008 #### 125805 STN EN 62256: 2018 ### EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM EN 62256 September 2017 ICS 27.140 Supersedes EN 62256:2008 #### **English Version** ### Hydraulic turbines, storage pumps and pump-turbines -Rehabilitation and performance improvement (IEC 62256:2017) Turbines hydrauliques, pompes d'accumulation et pompes turbines - Réhabilitation et amélioration des performances (IEC 62256:2017) Wasserturbinen, Speicherpumpen und Pumpturbinen -Modernisierung und Verbesserung der Leistungseigenschaften (IEC 62256:2017) This European Standard was approved by CENELEC on 2017-07-04. CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CENELEC member. This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CENELEC member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions. CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom. European Committee for Electrotechnical Standardization Comité Européen de Normalisation Electrotechnique Europäisches Komitee für Elektrotechnische Normung CEN-CENELEC Management Centre: Avenue Marnix 17, B-1000 Brussels © 2017 CENELEC All rights of exploitation in any form and by any means reserved worldwide for CENELEC Members. Ref. No. EN 62256:2017 E #### **European foreword** The text of document 4/323/FDIS, future edition 2 of IEC 62256, prepared by IEC TC 4 "Hydraulic turbines" was submitted to the IEC-CENELEC parallel vote and approved by CENELEC as EN 62256:2017. The following dates are fixed: - latest date by which the document has to be implemented at national level by publication of an identical national standard or by endorsement - latest date by which the national standards conflicting with (dow) 2020-07-04 the document have to be withdrawn This document supersedes EN 62256:2008. Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CENELEC shall not be held responsible for identifying any or all such patent rights. #### **Endorsement notice** The text of the International Standard IEC 62256:2017 was approved by CENELEC as a European Standard without any modification. In the official version, for Bibliography, the following notes have to be added for the standards indicated: | IEC 60041 | NOTE | Harmonized as EN 60041. | |--------------------|------|----------------------------------| | IEC 60193 | NOTE | Harmonized as EN 60193. | | IEC 60609 (Series) | NOTE | Harmonized as EN 60609 (Series). | | IEC 60994 | NOTE | Harmonized as EN 60994. | | IEC 62097 | NOTE | Harmonized as EN 62097. | | IEC 62364 | NOTE | Harmonized as EN 62364. | **IEC 62256** Edition 2.0 2017-05 # INTERNATIONAL STANDARD Hydraulic turbines, storage pumps and pump-turbines – Rehabilitation and performance improvement # THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2017 IEC, Geneva, Switzerland All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information. IEC Central Office Tel.: +41 22 919 02 11 3, rue de Varembé Fax: +41 22 919 03 00 CH-1211 Geneva 20 info@iec.ch Switzerland www.iec.ch #### About the IEC The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies. #### About IEC publications The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigenda or an amendment might have been published. #### IEC Catalogue - webstore.iec.ch/catalogue The stand-alone application for consulting the entire bibliographical information on IEC International Standards, Technical Specifications, Technical Reports and other documents. Available for PC, Mac OS, Android Tablets and iPad #### IEC publications search - www.iec.ch/searchpub The advanced search enables to find IEC publications by a variety of criteria (reference number, text, technical committee,...). It also gives information on projects, replaced and withdrawn publications. #### IEC Just Published - webstore.iec.ch/justpublished Stay up to date on all new IEC publications. Just Published details all new publications released. Available online and also once a month by email. #### Electropedia - www.electropedia.org The world's leading online dictionary of electronic and electrical terms containing 20 000 terms and definitions in English and French, with equivalent terms in 16 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online. #### IEC Glossary - std.iec.ch/glossary 65 000 electrotechnical terminology entries in English and French extracted from the Terms and Definitions clause of IEC publications issued since 2002. Some entries have been collected from earlier publications of IEC TC 37, 77, 86 and CISPR. #### IEC Customer Service Centre - webstore.iec.ch/csc If you wish to give us your feedback on this publication or need further assistance, please contact the Customer Service Centre: csc@iec.ch. IEC 62256 Edition 2.0 2017-05 # INTERNATIONAL STANDARD Hydraulic turbines, storage pumps and pump-turbines – Rehabilitation and performance improvement INTERNATIONAL ELECTROTECHNICAL COMMISSION ISBN 978-2-8322-4340-4 Warning! Make sure that you obtained this publication from an authorized distributor. ### **CONTENTS** | F | DREWO | RD | 7 | |----|----------------|--|----| | IN | TRODU | ICTION | 9 | | 1 | Scop | e | 10 | | 2 | Norm | native references | 10 | | 3 | Term | s, definitions and nomenclature | 10 | | 4 | | ons for rehabilitating | | | • | 4.1 | General | | | | 4.1 | Reliability and availability increase | | | | 4.3 | Life extension and performance restoration | | | | 4.4 | Performance improvement | | | | 4.5 | Plant safety improvement | | | | 4.6 | Environmental, social and regulatory issues | | | | 4.7 | Maintenance and operating cost reduction | | | | 4.8 | Other considerations | | | 5 | - | es of a rehabilitation project | | | Ü | 5.1 | General | | | | 5.1 | Decision on organization | | | | 5.2.1 | • | | | | 5.2.1 | | | | | 5.2.2 | · | | | | 5.2.3
5.3 | S . | | | | 5.3.1 | Level of assessment and determination of scope | | | | | | | | | 5.3.2
5.3.3 | | | | | | , , , | | | | 5.3.4
5.4 | Contractual issues | | | | | | | | | 5.4.1
5.4.2 | | | | | | · | | | | 5.4.3 | ŭ | | | | 5.4.4
5.5 | () | | | | 5.5.1 | Execution of project | | | | 5.5.1 | | | | | 5.5.2
5.6 | Evaluation of results and compliance with guarantees | | | | 5.6.1 | General | | | | 5.6.2 | | | | | 5.6.2 | · | | | | 5.6.4 | • | | | 6 | | | | | O | | duling, cost analysis and risk analysis | | | | 6.1 | Scheduling | | | | 6.1.1 | General | | | | 6.1.2 | , | | | | 6.1.3 | 5 1 | | | | 6.1.4 | 31 | | | | 6.1.5 | | | | | 6.2 | Economic and financial analyses | 29 | | | 6.2.1 | General | . 29 | |---|----------------|--|------| | | 6.2.2 | Benefit-cost analysis | . 30 | | | 6.2.3 | Identification of anticipated benefits | .31 | | | 6.2.4 | Identification of anticipated costs and benefits | .32 | | | 6.2.5 | Sensitivity analysis | | | | 6.2.6 | Conclusions | | | | | (analysis | | | | 6.3.1 | General | | | | 6.3.2 | Non-achievement of performance risk | | | | | · | | | | 6.3.3
6.3.4 | Risk of continued operation without rehabilitation Extension of outage risk | | | | | • | | | | 6.3.5 | Financial risks | | | | 6.3.6 | Project scope risk | | | | 6.3.7 | Other risks | | | 7 | Assessme | ent and determination of scope of the work | . 37 | | | 7.1 Ger | neral | . 37 | | | 7.2 Ass | essment of the site | . 37 | | | 7.2.1 | Hydrology | . 37 | | | 7.2.2 | Actual energy production | .38 | | | 7.2.3 | Environmental, social and regulatory issues | . 38 | | | 7.3 The | assessment of the turbine | | | | 7.3.1 | General | | | | 7.3.2 | Turbine integrity assessment | | | | 7.3.3 | Residual life | | | | 7.3.4 | Turbine performance assessment | | | | | assessment of related equipment | | | | 7.4.1 | General | | | | 7.4.1 | Generator and thrust bearing | | | | | ~ | | | | 7.4.3 | Turbine governor | | | | 7.4.4 | Turbine inlet and outlet valves, pressure relief valve | | | | 7.4.5 | Auxiliary equipment | | | | 7.4.6 | Equipment for erection, dismantling and maintenance | | | | 7.4.7 | Penstock and other water passages | | | | 7.4.8 | Consequences of changes in plant specific hydraulic energy (head) | | | | 7.4.9 | Grid integration | | | 8 | Hydraulic | design and performance testing options | . 87 | | | 8.1 Ger | neral | .87 | | | 8.2 Con | nputational hydraulic design | .88 | | | 8.2.1 | General | .88 | | | 8.2.2 | The role of CFD | | | | 8.2.3 | The process of a CFD cycle | | | | 8.2.4 | The accuracy of CFD results | | | | 8.2.5 | How to use CFD for rehabilitation | | | | 8.2.6 | CFD versus model tests | | | | | del tests | | | | | General | | | | 8.3.1 | | | | | 8.3.2 | Model test similitude | | | | 8.3.3 | Model test content | | | | 834 | Model test application | Q3 | | 8.3.5 | Model test location | 95 | |-------------|---|-----| | 8.4 | Prototype performance test | 96 | | 8.4.1 | General | 96 | | 8.4.2 | Prototype performance test accuracy | 97 | | 8.4.3 | Prototype performance test types | 97 | | 8.4.4 | Evaluation of results | 98 | | 9 Spec | ifications | 99 | | 9.1 | General | 99 | | 9.2 | Reference standards | 99 | | 9.3 | Information to be included in the tender documents | 100 | | 9.4 | Documents to be developed in the course of the project | 101 | | Annex A | informative) Check-list for evaluation of existing turbine | 103 | | Annex B (| informative) Assessment examples | 136 | | B.1 | General | | | B.2 | Runner (applicable to Francis, Kaplan, propeller and Pelton) | | | B.2.1 | , | | | B.2.2 | | | | B.2.3 | · · | | | B.2.4 | · | | | B.2.5 | · | | | B.2.6 | | | | B.3 | Stay ring | | | B.3.1 | , , | | | B.3.2 | | | | B.3.3 | · · | | | B.3.4 | · | | | B.3.5 | · | | | B.3.6 | Scope of work (possible action to be taken) | 144 | | B.4 | Guide vanes | | | B.4.1 | Documentation – Available data | 144 | | B.4.2 | Design review | 145 | | B.4.3 | | | | B.4.4 | Assessment of inspection results | 146 | | B.4.5 | Current condition assessment | 147 | | B.4.6 | Scope of work | 147 | | B.5 | Real life example: Pelton runner with severe crack | 148 | | B.5.1 | Data of the Pelton runner | 148 | | B.5.2 | Fatigue analysis | 148 | | B.5.3 | Fracture-mechanics analysis | 150 | | B.5.4 | Results for the Pelton runner | 150 | | Annex C | (informative) Checklist for evaluation of related equipment | 152 | | Bibliograp | bhy | 156 | | Figure 1 - | - Flow diagram depicting the logic of the rehabilitation process | 16 | | Figure 2 - | - Critical zones for cracks "A" and "B" in Pelton runner buckets | 51 | | Figure 3 - | - Bathtub curve | 53 | | • | - Process of residual life estimation | | | • | - Schematic behaviour for the different stages in the fatigue process | | | . iguid J - | contained boliaviour for the unforcing stages in the rangue process | | | Figure 6 – Start-up and full load strain gauge signal on Francis blade | 60 | |---|-----| | Figure 7 – Relative efficiency versus relative output – Original and new runners | 63 | | Figure 8 – Relative efficiency versus output – Original and new runners – Outardes 3 generating station | 64 | | Figure 9 – Efficiency and distribution of losses versus specific speed for Francis turbines (model) in 2005 | 65 | | Figure 10 – Relative efficiency gain following modification of the blades on the La Grande 3 runner, in Quebec, Canada | 67 | | Figure 11 – Potential efficiency improvement for Francis turbine rehabilitation | 71 | | Figure 12 – Potential efficiency improvement for Kaplan turbine rehabilitation | 72 | | Figure 13 – Cavitation and corrosion-erosion in Francis runner | 74 | | Figure 14 – Back side erosion of the entrance into a Pelton bucket | 75 | | Figure 15 – Leading edge cavitation erosion on a Francis pump-turbine caused by extended periods of operation at very low loads | | | Figure 16 – Severe particle erosion damage in a Francis runner | 78 | | Table 1 – Expected life of a hydropower plant and its subsystems before major work | | | Table 2 – Typical routine inspections | | | Table 3 – Example of a rating system for the inspection results | 58 | | Table 4 – Example of a typical list of turbine components for Francis and Kaplan with different weight factors X_1 to X_7 based on relative importance | 59 | | Table 5 – Example of rating of a single component assessment including three assessment criteria | 59 | | Table 6 – Francis turbine potential efficiency improvement (%) for runner profile modifications only | 66 | | Table 7 – Potential impact of design and condition of runner seals on Francis turbine efficiency with new replacement runner or rehabilitated runner (%) | 69 | | Table 8 – Potential total gain in efficiency from the replacement of a Francis turbine runner including the blade profile improvements, the restoration of surface condition and the reduction of seal losses | 69 | | Table 9 – Potential additional efficiency improvement by rehabilitation/replacement of other water passage components on a Francis turbine (%) | 70 | | Table A.1 – Assessment of turbine embedded parts – Stay ring | 103 | | Table A.2 – Assessment of turbine embedded parts – Spiral or semi-spiral case | | | Table A.3 – Assessment of turbine embedded parts – Discharge ring | 105 | | Table A.4 – Assessment of turbine embedded parts – Draft tube | 107 | | Table A.5 – Assessment of turbine non-embedded, non-rotating parts – Headcover | 109 | | Table A.6 – Assessment of turbine non-embedded, non-rotating parts – Intermediate and inner headcovers | 112 | | Table A.7 – Assessment of turbine non embedded, non-rotating parts – Bottom ring | 113 | | Table A.8 – Assessment of turbine non embedded, non-rotating parts – Guide vanes | 115 | | Table A.9 – Assessment of turbine non embedded, non-rotating parts – Guide vane operating mechanism | 117 | | Table A.10 – Assessment of turbine non embedded, non-rotating parts – Operating ring | 118 | | Table A.11 – Assessment of turbine non embedded, non-rotating parts – Servomotors | 119 | | Table A.12 – Assessment of turbine non embedded, non-rotating parts – Guide bearings | 120 | | Table A.13 – Assessment of turbine non embedded, non-rotating parts – Turbine shaft seal (mechanical seal or packing box) | 122 | |---|-----| | Table A.14 – Assessment of turbine non embedded, non-rotating parts – Thrust bearing support | 122 | | Table A.15 – Assessment of turbine non embedded, non-rotating parts – Nozzles | 123 | | Table A.16 – Assessment of turbine non embedded, non-rotating parts – Deflectors and energy dissipation | 124 | | Table A.17 – Assessment of turbine rotating parts – Runner | 125 | | Table A.18 – Assessment of turbine rotating parts – Runner | 128 | | Table A.19 – Assessment of turbine rotating parts – Runner | 130 | | Table A.20 – Assessment of turbine rotating parts – Turbine shaft | 131 | | Table A.21 – Assessment of turbine rotating parts – Oil head and oil distribution pipes | 132 | | Table A.22 – Assessment of turbine auxiliaries – Speed and load regulation system (governor) | 133 | | Table A.23 – Assessment of turbine auxiliaries – Turbine aeration system | 134 | | Table A.24 – Assessment of turbine auxiliaries – Lubrication system (guide vane mechanism) | 135 | | Table C.1 – Assessment of related equipment – Governor | 152 | | Table C.2 – Assessment of related equipment – Generator and thrust bearing | 153 | | Table C.3 – Assessment of related equipment – Penstock and turbine inlet valves | 154 | | Table C.4 – Assessment of related equipment – Civil works | 155 | | Table C.5 – Assessment of related equipment – Crane, erection equipment | 155 | #### INTERNATIONAL ELECTROTECHNICAL COMMISSION ## HYDRAULIC TURBINES, STORAGE PUMPS AND PUMP-TURBINES – REHABILITATION AND PERFORMANCE IMPROVEMENT #### **FOREWORD** - 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations. - 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees. - 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user. - 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter. - 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies. - 6) All users should ensure that they have the latest edition of this publication. - 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications - 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication. - 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights. International Standard IEC 62256 has been prepared by IEC technical committee 4: Hydraulic turbines. This second edition cancels and replaces the first edition published in 2008. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition: - Tables 2 to 23 modified, completed and moved to Annex A; - 7.3.2: - subclauses moved with text changes; - new subclauses on temperature, noise, galvanic corrosion, galling and replacement of components without assessment; - 7.3.3: complete new subclause on residual life; - Tables 29 to 32 moved to Annex C; - 8 - new Annex B with assessment examples. The text of this standard is based on the following documents: | FDIS | Report on voting | |------------|------------------| | 4/323/FDIS | 4/326/RVD | Full information on the voting for the approval of this International Standard can be found in the report on voting indicated in the above table. This document has been drafted in accordance with the ISO/IEC Directives, Part 2. The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific document. At this date, the document will be - reconfirmed, - withdrawn, - · replaced by a revised edition, or - amended. A bilingual version of this publication may be issued at a later date. IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer. IEC 62256:2017 © IEC 2017 _ 9 _ #### INTRODUCTION Hydro plant owners make significant investments annually in rehabilitating plant equipment (turbines, generators, transformers, penstocks, gates etc.) and structures in order to improve the level of service to their customers and to optimize their revenue. In the absence of guidelines, owners may be spending needlessly, or may be taking unnecessary risks and thereby achieving results that are less than optimal. This document is intended to be a tool in the optimisation and decision process. Edition 1 of this International Standard was based on the IEA document *Guidelines on Methodology for Hydroelectric Francis Turbine Upgrading by Runner Replacement*. ### HYDRAULIC TURBINES, STORAGE PUMPS AND PUMP-TURBINES – REHABILITATION AND PERFORMANCE IMPROVEMENT #### 1 Scope This document covers turbines, storage pumps and pump-turbines of all sizes and of the following types: - Francis; - Kaplan; - propeller; - Pelton (turbines only); - · bulb turbines. This document also identifies without detailed discussion, other powerhouse equipment that could affect or be affected by a turbine, storage pump, or pump-turbine rehabilitation. The object of this document is to assist in identifying, evaluating and executing rehabilitation and performance improvement projects for hydraulic turbines, storage pumps and pumpturbines. This document can be used by owners, consultants, and suppliers to define: - needs and economics for rehabilitation and performance improvement; - scope of work; - specifications; - evaluation of results. This document is intended to be: - · an aid in the decision process; - an extensive source of information on rehabilitation; - an identification of the key milestones in the rehabilitation process; - an identification of the points to be addressed in the decision processes. This document is not intended to be a detailed engineering manual nor a maintenance document. #### 2 Normative references There are no normative references in this document. ### koniec náhľadu – text ďalej pokračuje v platenej verzii STN