STN #### Dosky s optickými obvodmi Základné skúšobné a meracie postupy Časť 2: Všeobecné pokyny na definovanie podmienok merania optických charakteristík dosiek s optickými obvodmi STN EN 62496-2 35 9285 Optical circuit boards - Basic test and measurement procedures - Part 2: General guidance for definition of measurement conditions for optical characteristics of optical circuit boards Táto norma obsahuje anglickú verziu európskej normy. This standard includes the English version of the European Standard. Táto norma bola oznámená vo Vestníku ÚNMS SR č. 02/18 Obsahuje: EN 62496-2:2017, IEC 62496-2:2017 ### EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM EN 62496-2 September 2017 ICS 33.180.01 #### **English Version** Optical circuit boards Basic test and measurement procedures Part 2: General guidance for definition of measurement conditions for optical characteristics of optical circuit boards (IEC 62496-2:2017) Cartes à circuits optiques Procédures fondamentales d'essais et de mesures Partie 2: Recommandations générales relatives à la détermination des conditions de mesure des caractéristiques optiques des cartes à circuits optiques (IEC 62496-2:2017) Optische Leiterplatten -Grundlegende Prüf- und Messverfahren -Teil 2: Allgemeiner Leitfaden zur Festlegung der Bedingungen für die Messung der optischen Eigenschaften von optischen Leiterplatten (IEC 62496-2:2017) This European Standard was approved by CENELEC on 2017-06-28. CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CENELEC member. This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CENELEC member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions. CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom. European Committee for Electrotechnical Standardization Comité Européen de Normalisation Electrotechnique Europäisches Komitee für Elektrotechnische Normung CEN-CENELEC Management Centre: Avenue Marnix 17, B-1000 Brussels © 2017 CENELEC All rights of exploitation in any form and by any means reserved worldwide for CENELEC Members. Ref. No. EN 62496-2:2017 E #### **European foreword** The text of document 86/509/CDV, future edition 1 of IEC 62496-2, prepared by IEC/TC 86 "Fibre optics" was submitted to the IEC-CENELEC parallel vote and approved by CENELEC as EN 62496-2:2017. The following dates are fixed: - latest date by which the document has to be implemented at national level by publication of an identical national standard or by endorsement - latest date by which the national standards conflicting with (dow) 2020-06-28 the document have to be withdrawn Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CENELEC shall not be held responsible for identifying any or all such patent rights. #### **Endorsement notice** The text of the International Standard IEC 62496-2:2017 was approved by CENELEC as a European Standard without any modification. In the official version, for Bibliography, the following notes have to be added for the standards indicated: | IEC 60793-2 | NOTE | Harmonized as EN 60793-2. | |------------------|------|--| | IEC 60793-1-43 | NOTE | Harmonized as EN 60793-1-43. | | IEC 60825-1 | NOTE | Harmonized as EN 60825-1. | | IEC 61280-4-1 | NOTE | Harmonized as EN 61280-4-1. | | IEC 61745 | NOTE | Harmonized as EN 61745. | | IEC 62496-1 | NOTE | Harmonized as EN 62496-1. | | IEC 62496-2-4 | NOTE | Harmonized as EN 62496-2-4. | | IEC 62496-4-1 1) | NOTE | Harmonized as EN 62496-4-1 ²⁾ . | - ¹⁾ Under preparation. Stage at the time of publication: IEC PCC 62496-4-1:2017. ²⁾ Under preparation. Stage at the time of publication: prEN 62496-4-1. #### **Annex ZA** (normative) # Normative references to international publications with their corresponding European publications The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. NOTE 1 When an International Publication has been modified by common modifications, indicated by (mod), the relevant EN/HD applies. NOTE 2 Up-to-date information on the latest versions of the European Standards listed in this annex is available here: www.cenelec.eu. | <u>Publication</u> | <u>Year</u> | <u>Title</u> | EN/HD | <u>Year</u> | |--------------------|-------------|---|---------------|-------------| | IEC 61300-1 | - | Fibre optic interconnecting devices and passive components - Basic test and measurement procedures - Part 1: General and guidance | EN 61300-1 | - | | IEC 61300-3-53 | - | Fibre optic interconnecting devices and passive components - Basic test and measurement procedures - Part 3-53: Examinations and measurements - Encircled angular flux (EAF) measurement method based on two-dimensional far field data from step index multimode waveguide (including fibre) | EN 61300-3-53 | - | | IEC 62496-2-1 | 2011 | Optical circuit boards - Part 2-1:
Measurements - Optical attenuation and
isolation | EN 62496-2-1 | 2011 | | IEC 62614 | - | Fibre optics - Launch condition requirements for measuring multimode attenuation | EN 62614 | - | IEC 62496-2 Edition 1.0 2017-05 # INTERNATIONAL STANDARD Optical circuit boards – Basic test and measurement procedures – Part 2: General guidance for definition of measurement conditions for optical characteristics of optical circuit boards ### THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2017 IEC, Geneva, Switzerland All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information. IEC Central Office Tel.: +41 22 919 02 11 3, rue de Varembé Fax: +41 22 919 03 00 CH-1211 Geneva 20 info@iec.ch Switzerland www.iec.ch #### About the IEC The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies. #### About IEC publications The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigenda or an amendment might have been published. #### IEC Catalogue - webstore.iec.ch/catalogue The stand-alone application for consulting the entire bibliographical information on IEC International Standards, Technical Specifications, Technical Reports and other documents. Available for PC, Mac OS, Android Tablets and iPad. #### IEC publications search - www.iec.ch/searchpub The advanced search enables to find IEC publications by a variety of criteria (reference number, text, technical committee,...). It also gives information on projects, replaced and withdrawn publications. #### IEC Just Published - webstore.iec.ch/justpublished Stay up to date on all new IEC publications. Just Published details all new publications released. Available online and also once a month by email. #### Electropedia - www.electropedia.org The world's leading online dictionary of electronic and electrical terms containing 20 000 terms and definitions in English and French, with equivalent terms in 16 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online. #### IEC Glossary - std.iec.ch/glossary 65 000 electrotechnical terminology entries in English and French extracted from the Terms and Definitions clause of IEC publications issued since 2002. Some entries have been collected from earlier publications of IEC TC 37, 77, 86 and CISPR. #### IEC Customer Service Centre - webstore.iec.ch/csc If you wish to give us your feedback on this publication or need further assistance, please contact the Customer Service Centre: csc@iec.ch. IEC 62496-2 Edition 1.0 2017-05 # INTERNATIONAL STANDARD Optical circuit boards – Basic test and measurement procedures – Part 2: General guidance for definition of measurement conditions for optical characteristics of optical circuit boards INTERNATIONAL ELECTROTECHNICAL COMMISSION ICS 33.180.01 ISBN 978-2-8322-4404-3 Warning! Make sure that you obtained this publication from an authorized distributor. ### **CONTENTS** | F | DREWO | RD | 4 | |----|-------|--|----| | IN | TRODU | CTION | 6 | | 1 | Scop | e | 7 | | 2 | Norm | ative references | 7 | | 3 | Term | s and definitions | 7 | | 4 | Meas | surement definition system for optical circuit boards | 9 | | | 4.1 | General | 9 | | | 4.2 | Measurement definition system requirements | | | | 4.2.1 | · | | | | 4.2.2 | • | | | | 4.2.3 | • | | | | 4.2.4 | • | | | | 4.2.5 | Independent | 10 | | | 4.2.6 | Scalable | 10 | | | 4.2.7 | Customised requirements | 10 | | | 4.2.8 | Prioritised structure | 10 | | | 4.3 | Measurement definition criteria | 10 | | | 4.3.1 | General | 10 | | | 4.3.2 | Source characteristics | 11 | | | 4.3.3 | Launch conditions | 11 | | | 4.3.4 | Input coupling conditions | 14 | | | 4.3.5 | Output coupling conditions | 15 | | | 4.3.6 | Capturing conditions | 16 | | | 4.4 | Launch and capturing position | 16 | | | 4.5 | Launch and capture direction | 17 | | 5 | Meas | surement identification code | 19 | | | 5.1 | General | 19 | | | 5.2 | Measurement identification code construction | | | | 5.2.1 | | | | | 5.2.2 | AAA – Source characteristics | 19 | | | 5.2.3 | | | | | 5.2.4 | | | | | 5.2.5 | | | | | 5.2.6 | EEE – Capturing conditions | 20 | | | 5.3 | Extended measurement identification code with customisation parameters | | | | 5.3.1 | General | 20 | | | 5.3.2 | Customisation parameters with placeholders | 20 | | | 5.4 | Reference measurements | 21 | | | 5.5 | Coordinate table AAA – Source characteristics | 21 | | | 5.5.1 | Mandatory parameters | 21 | | | 5.5.2 | • • | | | | 5.6 | Coordinate table BBB – Launch conditions | | | | 5.6.1 | Mandatory parameter | 24 | | | 5.6.2 | Customisation parameters | 24 | | | 5.7 | Coordinate table CCC – Input coupling conditions | 27 | | 5.7.1 | Mandatory parameters | 27 | |--------------|--|----| | 5.7.2 | Customisation parameters | 27 | | 5.8 C | oordinate table DDD – Output coupling conditions | 29 | | 5.8.1 | Mandatory parameters | 29 | | 5.8.2 | Customisation parameters | | | 5.9 C | oordinate table EEE – Capturing conditions | 31 | | 5.9.1 | Mandatory parameters | | | 5.9.2 | Customisation parameters | | | | xamples of deployment | | | 5.10.1 | General | 34 | | 5.10.2 | MIC-042-113(400)-001-001-112 (integrating sphere device details including supplier and model number) | 34 | | 5.10.3 | MIC-072-123(205)-053(1.56, X,X)-001-042 (integrating sphere device details including supplier and model number) | 34 | | 5.10.4 | Fast polarisation axis: MIC-091-072(150)-042(1.53, 25, -30)-051-004; slow polarisation axis: MIC-091-072(75)-042(1.53, 25, -120)-051-004 | 35 | | Annex A (inf | formative) State of the art in optical interconnect technologies | | | • | iversity of optical interconnect technologies | | | | bre-optic circuit laminates | | | | olymer waveguides | | | | anar glass waveguides | | | A.5 Fr | ree space optics | 37 | | A.6 Ta | arget applications | 37 | | Bibliography | [/] | 38 | | Figure 1 – C | optical circuit board varieties | 6 | | Figure 2 – R | ecommended test setup for single-mode fibre launch conditions | 13 | | Figure 3 – R | ecommended test setup for multimode fibre launch conditions | 13 | | Figure 4 – C | ross-sectional views of channel under test at input | 15 | | _ | ross-sectional views of the channel under test at output | | | • | leasurement setup with collinear launch and capture direction | | | • | leasurement setup with orthogonal launch and capture direction | | | • | leasurement setup with oblique launch and capture direction | | | ŭ | · | | | | leasurement identification code construction | | | Figure 10 – | Reference measurements with the same MIC | 21 | | | ecommended modal launch profiles | | | | AA coordinate reference for source characteristics | | | Table 3 – Bi | BB coordinate reference for launch conditions | 25 | | Table 4 – Co | CC coordinate reference for input coupling conditions | 28 | | Table 5 – DI | OD coordinate reference for output coupling conditions | 30 | | Table 6 – FF | FE coordinate reference for capturing conditions | 32 | #### INTERNATIONAL ELECTROTECHNICAL COMMISSION _____ ### OPTICAL CIRCUIT BOARDS – BASIC TEST AND MEASUREMENT PROCEDURES – ## Part 2: General guidance for definition of measurement conditions for optical characteristics of optical circuit boards #### **FOREWORD** - 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations. - 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees. - 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user. - 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter. - 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies. - 6) All users should ensure that they have the latest edition of this publication. - 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications. - 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication. - 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights. International Standard IEC 62496-2 has been prepared by IEC technical committee 86: Fibre optics. The text of this document is based on the following documents: | CDV | Report on voting | |------------|------------------| | 86/509/CDV | 86/515/RVC | Full information on the voting for the approval of this International Standard can be found in the report on voting indicated in the above table. This document has been drafted in accordance with the ISO/IEC Directives, Part 2. IEC 62496-2:2017 © IEC 2017 - 5 - A list of all parts in the IEC 62496 series, published under the general title *Optical circuit boards – Basic test and measurement procedures*, can be found on the IEC website. Future standards in this series will carry the new general title as cited above. Titles of existing standards in this series will be updated at the time of the next edition. The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific document. At this date, the document will be - · reconfirmed, - withdrawn, - · replaced by a revised edition, or - amended. A bilingual version of this publication may be issued at a later date. IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer. #### INTRODUCTION Bandwidth densities in modern data communication systems are driven by interconnect speeds and scalable input/output (I/O) and will continue to increase over the coming years, thereby severely impacting cost and performance in future data communication systems, bringing increased demands in terms of signal integrity and power consumption. The projected increase in capacity, processing power and bandwidth density in future information communication systems will need to be addressed by the migration of embedded optical interconnects into system enclosures. In particular, this would necessitate the deployment of optical circuit board technologies on some or all key system cards, such as the backplane, motherboard and peripheral circuit boards. Many varieties of optical circuit board technology exist today, which differ strongly from each other in terms of their intrinsic waveguide technology. As shown in Figure 1, these varieties include, but are not limited to: a) fibre-optic laminate, b) polymer waveguides and c) planar glass waveguides. Annex A provides a detailed overview of the state of the art of such optical interconnect technologies. a) Fibre-optic laminate b) Polymer waveguides c) Planar glass waveguides Figure 1 - Optical circuit board varieties One important prerequisite to the commercial adoption of optical circuit boards is a reliable test and measurement definition system that is agnostic to the type of waveguide system under test and, therefore, can be applied to different optical circuit board technologies as well as being adaptable to future variants. A serious and common problem with the measurement of optical waveguide systems has been lack of proper definition of the measurement conditions for a given test regime, and consequently strong inconsistencies ensue in the results of measurements by different parties on the same test sample. To date, no methodology has been established to ensure that test and measurement conditions for such optical waveguide systems are properly identified. This document specifies a method of capturing sufficient information about the measurement conditions for a given optical circuit board to ensure consistency of measurement results within an acceptable margin. Given the substantial variety in properties and requirements for different optical circuit board types, some test environments and conditions are more appropriate than others for a given optical circuit board. It is, therefore, crucial that this measurement identification standard encompass a comprehensive range of test and measurement scenarios for all known types of optical circuit boards and their waveguide systems, while also being sufficiently adaptable and extendable to accommodate future waveguide technologies. In addition, a degree of customisation is possible to account for arbitrary test parameters. **-7** - ### OPTICAL CIRCUIT BOARDS – BASIC TEST AND MEASUREMENT PROCEDURES – ### Part 2: General guidance for definition of measurement conditions for optical characteristics of optical circuit boards #### 1 Scope This part of IEC 62496 specifies a method of defining the conditions for measurements of optical characteristics of optical circuit boards. The method comprises the use of code reference look-up tables to identify different critical aspects of the measurement environment. The values extracted from the tables are used to construct a measurement identification code, which, in itself, captures sufficient information about the measurement conditions, so as to ensure consistency of independently measured results within an acceptable margin. Recommended measurement conditions are specified to minimise further variation in independently measured results. #### 2 Normative references The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. IEC 61300-1, Fibre optic interconnecting devices and passive components – Basic test and measurement procedures – Part 1: General and guidance IEC 61300-3-53, Fibre optic interconnecting devices and passive components — Basic test and measurement procedures — Part 3-53: Examinations and measurements — Encircled angular flux (EAF) measurement method based on two-dimensional far field data from step index multimode waveguide (including fibre) IEC 62614, Fibre optics – Launch condition requirements for measuring multimode attenuation IEC 62496-2-1:2011, Optical circuit boards – Part 2-1: Measurements – Optical attenuation and isolation ### koniec náhľadu – text ďalej pokračuje v platenej verzii STN