Kovové materiály Skúšanie tečenia jednoosovým ťahom Skúšobná metóda (ISO 204: 2018) STN EN ISO 204 Metallic materials - Uniaxial creep testing in tension - Method of test (ISO 204:2018) Táto norma obsahuje anglickú verziu európskej normy. This standard includes the English version of the European Standard. Táto norma bola oznámená vo Vestníku ÚNMS SR č. 01/19 Obsahuje: EN ISO 204:2018, ISO 204:2018 Oznámením tejto normy sa ruší STN EN ISO 204 (42 0351) zo septembra 2009 # EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM **EN ISO 204** October 2018 ICS 77.040.10 Supersedes EN ISO 204:2009 ### **English Version** # Metallic materials - Uniaxial creep testing in tension - Method of test (ISO 204:2018) Matériaux métalliques - Essai de fluage uniaxial en traction - Méthode d'essai (ISO 204:2018) Metallische Werkstoffe - Einachsiger Zeitstandversuch unter Zugbeanspruchung - Prüfverfahren (ISO 204:2018) This European Standard was approved by CEN on 12 August 2018. CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN member. This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions. CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom. EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels # EN ISO 204:2018 (E) | Contents | Page | |-------------------|------| | European foreword | 3 | # **European foreword** This document (EN ISO 204:2018) has been prepared by Technical Committee ISO/TC 164 "Mechanical testing of metals" in collaboration with Technical Committee ECISS/TC 101 "Test methods for steel (other than chemical analysis)" the secretariat of which is held by AFNOR. This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by April 2019, and conflicting national standards shall be withdrawn at the latest by April 2019. Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN shall not be held responsible for identifying any or all such patent rights. This document supersedes EN ISO 204:2009. According to the CEN-CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom. ### **Endorsement notice** The text of ISO 204:2018 has been approved by CEN as EN ISO 204:2018 without any modification. # INTERNATIONAL STANDARD ISO 204 Third edition 2018-08 # Metallic materials — Uniaxial creep testing in tension — Method of test Matériaux métalliques — Essai de fluage uniaxial en traction — Méthode d'essai STN EN ISO 204: 2019 ISO 204:2018(E) # **COPYRIGHT PROTECTED DOCUMENT** © ISO 2018 All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Fax: +41 22 749 09 47 Email: copyright@iso.org Website: www.iso.org Published in Switzerland | Contents | | Page | |----------|--|--| | Fore | eword | iv | | Intro | roduction | | | 1 | Scope | 1 | | 2 | Normative references | | | 3 | Terms and definitions | | | 4 | | | | _ | Symbols and designations | | | 5 | Principle | | | 6 | Apparatus | | | 8 | Test pieces 7.1 Shape and dimensions 7.1.1 Shape and dimension of smooth test pieces 7.1.2 Shape and dimension of notched test pieces 7.2 Preparation 7.3 Determination of the original cross-sectional area 7.4 Marking of the original gauge length, Lo 7.5 Determination of the reference length, Lr Test procedure 8.1 Heating of the test piece 8.2 Application of the test force 8.3 Test interruptions 8.3.1 Planned interruptions of the test 8.3.2 Multiple test piece machine with several test piece 8.3.3 Combined test 8.3.4 Accidental interruption of the test 8.4 Recording of temperature and elongation or extension 8.4.1 Temperature 8.4.2 Elongation and extension 8.4.3 Elongation-time diagram or extension-time diagram | 12 13 13 14 14 14 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16 | | 9 | Determination of results1 | | | 10 | Test validity | | | 11 | Accuracy of the results 11.1 Expression of the results 11.2 Final uncertainty | | | 12 | Test report | 18 | | Anne | nex A (informative) Information concerning drift of thermocouple | es23 | | Anne | nex B (informative) Information concerning methods of calibration | on of thermocouples26 | | Anne | nex C (normative) Creep testing using test pieces with V or blunt of | circumferential notches27 | | Anne | nex D (informative) Method of estimating the uncertainty of the maccordance with the Guide to the expression of uncertainty in | | | | nex E (informative) Representation of results and extrapolation | | | Anne | $\mathbf{nex}\;\mathbf{F}\;(ext{informative})\;\mathbf{Computer}\;\mathbf{compatible}\;\mathbf{representation}\;\mathbf{of}\;\mathbf{stand}$ | ards48 | | Bibli | liography | 49 | ISO 204:2018(E) ### Foreword ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives). Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents). Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement. For an explanation on the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see the following URL: www.iso.org/iso/foreword.html. This document was prepared by Technical Committee ISO/TC 164, *Mechanical testing of metals*, Subcommittee SC 1, *Uniaxial testing*. This third edition cancels and replaces the second edition (ISO 204:2009), which has been technically revised. The main changes compared to the previous edition are as follows: - Some of the symbols have been changed to achieve harmonization with the ISO 6892 series. - For the purpose of this document, the terms "fracture" and "rupture" are interchangeable. - The term "indicated temperature", T_i, has been replaced by "corrected measured temperature", T_c, with errors from all sources being taken into account and any systematic errors having been corrected. The terms "elongation" and "extension" have been clarified and aligned with the terms used in the ISO 6892 series. Elongation refers to the test piece deformation measured manually either during deliberate test interruptions or after fracture, whilst extension is determined by continuous measurement using an extensometer. - Some information relating to the calibration of thermocouples has been transferred from an informative annex into the main body of the document. - Some changes have been made to $\frac{\text{Table 1}}{\text{Table 1}}$ and formulae have been amended using reference length, L_{r} . - Equation E.1 (now <u>Formula C.1</u>) has been corrected. - A new informative annex relating to computer compatible representation of standards has been added. Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html. # Introduction Creep is the phenomenon exhibited by materials which slowly deform when subjected to loading at elevated temperature. This document is concerned with the method used to measure such material behaviour. Annexes are included concerning temperature measurement using thermocouples and their calibration, creep testing test pieces with circumferential V and blunt (Bridgman) notches, estimation of measurement uncertainty, methods of extrapolation of creep rupture life and information about computer compatible representation of standards. NOTE 1 Information is still sought relating to the influence of off-axis loading or bending on the creep properties of various materials. Based on the future availability of quantitative data, consideration might be given as to whether the maximum amount of bending should be specified and an appropriate calibration procedure be recommended. The decision will need to be based on the availability of quantitative data[43]. NOTE 2 Information concerning the benefit of standards being produced in a computer compatible format is given in $\underbrace{Annex F}$. This document incorporates many recommendations developed through the European Creep Collaborative Committee (ECCC). NOTE 3 Several different gauge lengths and reference lengths are specified in this document. These lengths reflect custom and practice used in different laboratories throughout the world. In some cases, the lengths are physically marked on the test piece as lines or ridges; in other cases, the length can be a virtual length based upon calculations to determine an appropriate length to be used for the determination of creep elongation. For some test pieces, L_r , L_o and L_e are the same length (see 3.1, 3.2 and 3.3). "Extension" is used for uninterrupted creep test with continuous measurement of the increase of the length of the test piece by using an extensometer. "Elongation" is mainly used for interrupted creep test with the manual measurement of the increase of the length of the test piece. NOTE 4 For many applications, the term "strain" is synonymous with extension. ISO 204:2018(E) # Metallic materials — Uniaxial creep testing in tension — Method of test # 1 Scope This document specifies the methods for - a) uninterrupted creep tests with continuous monitoring of extension, - b) interrupted creep tests with periodic measurement of elongation, - c) stress rupture tests where normally only the time to fracture is measured, - d) a test to verify that a predetermined time can be exceeded under a given force, with the elongation or extension not necessarily being reported. NOTE A creep test can be continued until fracture has occurred or it can be stopped before fracture. ### 2 Normative references The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. ISO 6892-1, Metallic materials — Tensile testing — Part 1: Method of test at room temperature ISO 6892-2, Metallic materials — Tensile testing — Part 2: Method of test at elevated temperature ISO 7500-2, Metallic materials — Verification of static uniaxial testing machines — Part 2: Tension creep testing machines — Verification of the applied force ISO 9513, Metallic materials — Calibration of extensometer systems used in uniaxial testing # koniec náhľadu – text ďalej pokračuje v platenej verzii STN