STN # Polovodičové súčiastky Polovodičové rozhranie pre motorové vozidlá Časť 1: Všeobecné požiadavky na výkonové rozhranie senzorov motorových vozidiel STN EN IEC 62969-1 35 8793 Semiconductor devices - Semiconductor interface for automotive vehicles - Part 1: General requirements of power interface for automotive vehicle sensors Táto norma obsahuje anglickú verziu európskej normy. This standard includes the English version of the European Standard. Táto norma bola oznámená vo Vestníku ÚNMS SR č. 01/19 Obsahuje: EN IEC 62969-1:2018, IEC 62969-1:2017 STN EN IEC 62969-1: 2019 ### EUROPEAN STANDARD NORME EUROPÉENNE #### **EN IEC 62969-1** EUROPÄISCHE NORM February 2018 ICS 31.080.99 #### **English Version** Semiconductor devices - Semiconductor interface for automotive vehicles - Part 1: General requirements of power interface for automotive vehicle sensors (IEC 62969-1:2017) Dispositifs à semiconducteurs - Interface à semiconducteurs pour les véhicules automobiles - Partie 1 : Exigences générales de l'interface d'alimentation destinée aux capteurs des véhicules automobiles (IEC 62969-1:2017) Halbleiterbauelemente - Halbleiterschnittstelle für Automobile - Teil 1: Allgemeine Anforderungen an Energie-Schnittstellen für Automobil-Sensoren (IEC 62969-1:2017) This European Standard was approved by CENELEC on 2018-01-17. CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CENELEC member. This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CENELEC member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions. CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom. European Committee for Electrotechnical Standardization Comité Européen de Normalisation Electrotechnique Europäisches Komitee für Elektrotechnische Normung CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels #### IEC EN 62969-1:2018 (E) #### **European foreword** The text of document 47/2433/FDIS, future edition 1 of IEC 62969-1, prepared by IEC/TC 47 "Semiconductor devices" was submitted to the IEC-CENELEC parallel vote and approved by CENELEC as EN IEC 62969-1. The following dates are fixed: standards conflicting with the document have to be withdrawn | • | latest date by which the document has to be implemented at national level by publication of an identical national standard or by endorsement | (dop) | 2018-10-17 | |---|--|-------|------------| | • | latest date by which the national | (dow) | 2021-01-17 | Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CENELEC shall not be held responsible for identifying any or all such patent rights. #### **Endorsement notice** The text of the International Standard IEC 62969-1:2017 was approved by CENELEC as a European Standard without any modification. In the official version, for Bibliography, the following note has to be added for the standard indicated: IEC 61508 (all parts) NOTE Harmonized as EN 61508 (all parts). IEC EN 62969-1:2018 (E) #### Annex ZA (normative) # Normative references to international publications with their corresponding European publications The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. NOTE 1 Where an International Publication has been modified by common modifications, indicated by (mod), the relevant EN/HD applies. NOTE 2 Up-to-date information on the latest versions of the European Standards listed in this annex is available here: www.cenelec.eu. | <u>Publication</u> | <u>Year</u> | <u>Title</u> | EN/HD | <u>Year</u> | |--------------------|-------------|--|---------------|-------------| | IEC 60068-2-1 | - | Environmental testing Part 2-1: Tests - Test A: Cold | EN 60068-2-1 | - | | IEC 60068-2-2 | - | Environmental testing Part 2-2: Tests - Test B: Dry heat | EN 60068-2-2 | - | | IEC 60068-2-14 | - | Environmental testing Part 2-14: Tests - Test N: Change of temperature | EN 60068-2-14 | - | | IEC 60068-2-30 | - | Environmental testing Part 2-30: Tests - Test Db: Damp heat, cyclic (12 h + 12 h cycle) | EN 60068-2-30 | - | | IEC 60529 | - | Degrees of protection provided by enclosures (IP Code) | - | - | | IEC 60721 | series | Classification of environmental conditions - Part 1: Environmental parameters and their severities | - EN 60721 | series | | IEC 60749-10 | - | Semiconductor devices - Mechanical and climatic test methods Part 10: Mechanical shock | EN 60749-10 | - | | IEC 60749-12 | - | Semiconductor devices - Mechanical and climatic test methods - Part 12: Vibration, variable frequency | EN 60749-12 | - | | IEC 61851-1 | - | Electric vehicle conductive charging system Part 1: General requirements | - | - | | IEC 61967-1 | - | Integrated circuits - Measurement of electromagnetic emissions, 150 kHz to 1 GHz - Part 1: General conditions and definitions | - | - | | IEC 61967-2 | - | Integrated circuits - Measurement of electromagnetic emissions, 150 kHz to 1 GHz Part 2: Measurement of radiated emissions - TEM cell and wideband TEM cell method | EN 61967-2 | - | | IEC TS 61967-3 | - | Integrated circuits - Measurement of electromagnetic emissions - Part 3: Measurement of radiated emissions - Surface scan method | - | - | #### IEC EN 62969-1:2018 (E) | IEC 61967-4 | - | Integrated circuits - Measurement of electromagnetic emissions, 150 kHz to 1 GHz Part 4: Measurement of conducted emissions - 1 ohm/150 ohm direct coupling method | EN 61967-4 | - | |----------------|---|---|-----------------|---| | IEC 61967-5 | - | Integrated circuits - Measurement of
electromagnetic emissions, 150 kHz to 1
GHz Part 5: Measurement of conducted
emissions - Workbench Faraday Cage
method | EN 61967-5 | - | | IEC 61967-6 | - | Integrated circuits - Measurement of electromagnetic emissions, 150 kHz to 1 GHz Part 6: Measurement of conducted emissions - Magnetic probe method | EN 61967-6 | - | | IEC 61967-8 | - | Integrated circuits - Measurement of electromagnetic emissions Part 8: Measurement of radiated emissions - IC stripline method | EN 61967-8 | - | | IEC 62132-1 | - | Integrated circuits - Measurement of electromagnetic immunity - Part 1: Genera conditions and definitions | EN 62132-1
I | - | | IEC 62132-2 | - | Integrated circuits - Measurement of electromagnetic immunity Part 2: Measurement of radiated immunity - TEM cell and wideband TEM cell method | EN 62132-2 | - | | IEC 62132-3 | - | Integrated circuits - Measurement of electromagnetic immunity, 150 kHz to 1 GHz Part 3: Bulk current injection (BCI) method | EN 62132-3 | - | | IEC 62132-4 | - | Integrated circuits - Measurement of electromagnetic immunity, 150 kHz to 1 GHz Part 4: Direct RF power injection method | EN 62132-4 | - | | IEC 62132-5 | - | Integrated circuits - Measurement of electromagnetic immunity, 150 kHz to 1 GHz Part 5: Workbench Faraday cage method | EN 62132-5 | - | | IEC TS 61967-3 | - | Integrated circuits - Measurement of electromagnetic emissions - Part 3: Measurement of radiated emissions - Surface scan method | - | - | | IEC 62262 | - | Degrees of protection provided by enclosures for electrical equipment against external mechanical impacts (IK code) | EN 62262
t | - | IEC 62969-1 Edition 1.0 2017-12 # INTERNATIONAL STANDARD Semiconductor devices – Semiconductor interface for automotive vehicles – Part 1: General requirements of power interface for automotive vehicle sensors # THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2017 IEC, Geneva, Switzerland All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information. IEC Central Office Tel.: +41 22 919 02 11 3, rue de Varembé Fax: +41 22 919 03 00 CH-1211 Geneva 20 info@iec.ch Switzerland www.iec.ch #### About the IEC The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies. #### About IEC publications The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigenda or an amendment might have been published. #### IEC Catalogue - webstore.iec.ch/catalogue The stand-alone application for consulting the entire bibliographical information on IEC International Standards, Technical Specifications, Technical Reports and other documents. Available for PC, Mac OS, Android Tablets and iPad #### IEC publications search - www.iec.ch/searchpub The advanced search enables to find IEC publications by a variety of criteria (reference number, text, technical committee,...). It also gives information on projects, replaced and withdrawn publications. #### IEC Just Published - webstore.iec.ch/justpublished Stay up to date on all new IEC publications. Just Published details all new publications released. Available online and also once a month by email. #### Electropedia - www.electropedia.org The world's leading online dictionary of electronic and electrical terms containing 20 000 terms and definitions in English and French, with equivalent terms in 16 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online. #### IEC Glossary - std.iec.ch/glossary 65 000 electrotechnical terminology entries in English and French extracted from the Terms and Definitions clause of IEC publications issued since 2002. Some entries have been collected from earlier publications of IEC TC 37, 77, 86 and CISPR. #### IEC Customer Service Centre - webstore.iec.ch/csc If you wish to give us your feedback on this publication or need further assistance, please contact the Customer Service Centre: csc@iec.ch. IEC 62969-1 Edition 1.0 2017-12 # INTERNATIONAL STANDARD Semiconductor devices – Semiconductor interface for automotive vehicles – Part 1: General requirements of power interface for automotive vehicle sensors INTERNATIONAL ELECTROTECHNICAL COMMISSION ICS 31.080.99 ISBN 978-2-8322-5147-8 Warning! Make sure that you obtained this publication from an authorized distributor. - 2 - IEC 62969-1:2017 © IEC 2017 #### **CONTENTS** | FOREWORD | 3 | |---|----| | INTRODUCTION | 5 | | 1 Scope | 6 | | 2 Normative references | 6 | | 3 Terms and definitions | 7 | | 4 General system | | | 4.1 General system blocks | | | 4.2 Classification | | | 4.2.1 Sensors in automotive vehicles | 8 | | 4.2.2 Power sources | 9 | | 4.3 Data interface | 10 | | 4.3.2 Reset | 10 | | 4.3.3 Monitoring | | | 5 Environmental conditions and requirements | 10 | | 5.1 General | 10 | | 5.2 Test conditions and items | | | 5.2.1 General | | | 5.2.2 Temperature range | | | 5.2.3 Humidity | | | 5.2.4 Damp heat | | | 5.2.5 Temperature cycling | | | 5.2.6 Mechanical impact and vibration | | | 5.2.7 EMC | | | 5.3 Test setup | | | 6 Power interfaces and checking items | | | 6.1 Input voltage level | | | 6.2 Main error sources | | | 6.2.1 AC noise | | | 6.2.2 Voltage drop | | | 6.3 Redundancy of power interface | | | Annex A (informative) General description of power interface for automotive vehicle | | | sensors | 15 | | Bibliography | 16 | | Figure 1 – Power supply chains to the vehicle sensors | 8 | | Figure 2 – Example of test conditions and items | | | Figure 3 – Test setup for checking the power level to sensors | | | Figure 4 – Checking input voltage level to sensors (12 V sensors) | | | Figure A.1 – Sensor-based system in automotive vehicles | | | | | | Table 1 – Sensors for automotive vehicles | 9 | | Table 2 – Power sources to sensors in automotive vehicles | 9 | IEC 62969-1:2017 © IEC 2017 – 3 – #### INTERNATIONAL ELECTROTECHNICAL COMMISSION SEMICONDUCTOR DEVICES – SEMICONDUCTOR INTERFACE FOR AUTOMOTIVE VEHICLES – ## Part 1: General requirements of power interface for automotive vehicle sensors #### **FOREWORD** - 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations. - 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees. - 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user. - 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter - 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies. - 6) All users should ensure that they have the latest edition of this publication. - 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications. - 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication. - 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights. International Standard IEC 62969-1 has been prepared by IEC technical committee 47: Semiconductor devices. The text of this International Standard is based on the following documents: | FDIS | Report on voting | |--------------|------------------| | 47/2433/FDIS | 47/2447/RVD | Full information on the voting for the approval of this International Standard can be found in the report on voting indicated in the above table. This document has been drafted in accordance with the ISO/IEC Directives, Part 2. - 4 - IEC 62969-1:2017 © IEC 2017 A list of all the parts in the IEC 62969 series, published under the general title Semiconductor devices – Semiconductor interface for automotive vehicles, can be found on the IEC website. The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific document. At this date, the document will be - reconfirmed, - withdrawn, - replaced by a revised edition, or - amended. A bilingual version of this publication may be issued at a later date. IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer. IEC 62969-1:2017 © IEC 2017 - 5 - #### INTRODUCTION The IEC 62969 series is composed of four parts as follows: - IEC 62969-1, Semiconductor devices Semiconductor interface for automotive vehicles Part 1: General requirements of power interface for automotive vehicle sensors - IEC 62969-2, Semiconductor devices Semiconductor interface for automotive vehicles Part 2: Efficiency evaluation methods of wireless power transmission using resonance for automotive vehicle sensors - IEC 62969-3, Semiconductor devices Semiconductor interface for automotive vehicles Part 3: Shock driven piezoelectric energy harvesting for automotive vehicle sensors - IEC 62969-4, Semiconductor devices Semiconductor interface for automotive vehicles Part 4: Evaluation methods of data interface for automotive vehicle sensors The IEC 62969 series covers power and data interfaces for sensors in automotive vehicles. The first part covers general requirements of test conditions such as temperature, humidity, vibration, etc. for automotive sensor power interface. This part also includes various electrical performances of power interface such as voltage drop from power source to automotive sensors, noises, voltage level, etc. The second part covers "Efficiency evaluation methods of wireless power transmission using resonance for automotive vehicle sensors ". The third part covers "Shock driven piezoelectric energy harvesting for automotive vehicle sensors". The fourth part covers "Evaluation methods of data interface for automotive vehicle sensors". **- 6 -** IEC 62969-1:2017 © IEC 2017 # SEMICONDUCTOR DEVICES – SEMICONDUCTOR INTERFACE FOR AUTOMOTIVE VEHICLES – ### Part 1: General requirements of power interface for automotive vehicle sensors #### 1 Scope This part of IEC 62969 provides general requirements for performance evaluations and environmental conditions for the power interface of automotive vehicle sensors. For performance evaluations, various electrical performances such as voltage drop from power source to automotive sensors, AC noises and voltage level are included. For environmental conditions, various test conditions such as temperature, humidity and vibration are included. In addition, terms, definitions, symbols and configurations are covered in this part. NOTE Additional information on power interface for automotive vehicle sensors is provided in Annex A. #### 2 Normative references The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. IEC 60068-2-1, Environmental testing - Part 2-1: Tests - Test A: Cold IEC 60068-2-2, Environmental testing – Part 2-2: Tests – Test B: Dry heat IEC 60068-2-14, Environmental testing – Part 2-14: Tests – Test N: Change of temperature IEC 60068-2-30, Environmental testing - Part 2-30: Tests - Test Db: Damp heat, cyclic (12 h + 12 h cycle) IEC 60529, Degrees of protection provided by enclosures (IP Code) IEC 60721 (all parts), Classification of environmental conditions IEC 60749-10, Semiconductor devices – Mechanical and climatic test methods – Part 10: Mechanical shock IEC 60749-12, Semiconductor devices – Mechanical and climatic test methods – Part 12: Vibration, variable frequency IEC 61851-1, Electric vehicle conductive charging system – Part 1: General requirements IEC 61967-1, Integrated circuits – Measurement of electromagnetic emissions, 150 kHz to 1 GHz – Part 1: General conditions and definitions IEC 61967-2, Integrated circuits – Measurement of electromagnetic emissions, 150 kHz to 1 GHz – Part 2: Measurement of radiated emissions – TEM cell and wideband TEM cell method IEC 62969-1:2017 © IEC 2017 **-7-** IEC TS 61967-3, Integrated circuits – Measurement of electromagnetic emissions – Part 3: Measurement of radiated emissions – Surface scan method IEC 61967-4, Integrated circuits – Measurement of electromagnetic emissions, 150 kHz to 1 GHz – Part 4: Measurement of conducted emissions, 1 ohm/150 ohm direct coupling method IEC 61967-5, Integrated circuits – Measurement of electromagnetic emissions, 150 kHz to 1 GHz – Part 5: Measurement of conducted emissions – Workbench Faraday Cage method IEC 61967-6, Integrated circuits – Measurement of electromagnetic emissions, 150 kHz to 1 GHz – Part 6: Measurement of conducted emissions – Magnetic probe method IEC 61967-8, Integrated circuits – Measurement of electromagnetic emissions – Part 8: Measurement of radiated emissions – IC stripline method IEC 62132-1, Integrated circuits – Measurement of electromagnetic immunity – Part 1: General conditions and definitions IEC 62132-2, Integrated circuits – Measurement of electromagnetic immunity – Part 2: Measurement of radiated immunity – TEM cell and wideband TEM cell method IEC 62132-3, Integrated circuits – Measurement of electromagnetic immunity, 150 kHz to 1 GHz – Part 3: Bulk current injection (BCI) method IEC 62132-4, Integrated circuits – Measurement of electromagnetic immunity 150 kHz to 1 GHz – Part 4: Direct RF power injection method IEC 62132-5, Integrated circuits – Measurement of electromagnetic immunity, 150 kHz to 1 GHz – Part 5: Workbench Faraday cage method IEC TS 62215-2, Integrated circuits – Measurement of impulse immunity – Part 2: Synchronous transient injection method IEC 62262, Degrees of protection provided by enclosures for electrical equipment against external mechanical impacts (IK code) koniec náhľadu – text ďalej pokračuje v platenej verzii STN