	Špecifikácia metód a meracích prístrojov na meranie rádiového rušenia a odolnosti proti nemu Časť 1-4: Meracie prístroje na meranie rádiového rušonia a odolnosti proti nomu	STN EN IEC 55016-1-4
STN	Antény a skúšobné miesta na meranie vyžarovaného rušenia	
		33 4216

Specification for radio disturbance and immunity measuring apparatus and methods - Part 1-4: Radio disturbance and immunity measuring apparatus - Antennas and test sites for radiated disturbance measurements

Táto norma obsahuje anglickú verziu európskej normy. This standard includes the English version of the European Standard.

Táto norma bola oznámená vo Vestníku ÚNMS SR č. 06/19

Obsahuje: CISPR 16-1-4:2019, EN IEC 55016-1-4:2019

Oznámením tejto normy sa od 12.02.2022 ruší STN EN 55016-1-4 (33 4216) z októbra 2010

128852

Úrad pre normalizáciu, metrológiu a skúšobníctvo Slovenskej republiky, 2019 Slovenská technická norma a technická normalizačná informácia je chránená zákonom č. 60/2018 Z. z. o technickej normalizácii.

EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM

EN IEC 55016-1-4

March 2019

ICS 33.100.10; 33.100.20

Supersedes EN 55016-1-4:2010

English Version

Specification for radio disturbance and immunity measuring apparatus and methods - Part 1-4: Radio disturbance and immunity measuring apparatus - Antennas and test sites for radiated disturbance measurements (CISPR 16-1-4:2019)

Spécifications des méthodes et des appareils de mesure des perturbations radioélectriques et de l'immunité aux perturbations radioélectriques - Partie 1-4: Appareils de mesure des perturbations radioélectriques et de l'immunité aux perturbations radioélectriques - Antennes et emplacements d'essai pour les mesures des perturbations rayonnées (CISPR 16-1-4:2019) Anforderungen an Geräte und Einrichtungen sowie Festlegung der Verfahren zur Messung der hochfrequenten Störaussendung (Funkstörungen) und Störfestigkeit - Teil 1-4: Geräte und Einrichtungen zur Messung der hochfrequenten Störaussendung (Funkstörungen) und Störfestigkeit - Antennen und Messplätze für Messungen der gestrahlten Störaussendung (CISPR 16-1-4:2019)

This European Standard was approved by CENELEC on 2019-02-12. CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.

Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CENELEC member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CENELEC member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.

CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom.

European Committee for Electrotechnical Standardization Comité Européen de Normalisation Electrotechnique Europäisches Komitee für Elektrotechnische Normung

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels

© 2019 CENELEC All rights of exploitation in any form and by any means reserved worldwide for CENELEC Members.

European foreword

The text of document CIS/A/1262/FDIS, future edition 4 of CISPR 16-1-4, prepared by CISPR SC A "Radio-interference measurements and statistical methods" of CISPR "International special committee on radio interference" was submitted to the IEC-CENELEC parallel vote and approved by CENELEC as EN IEC 55016-1-4:2019.

The following dates are fixed:

•	latest date by which the document has to be implemented at national	(dop)	2019-11-12
	level by publication of an identical national standard or by endorsement		

• latest date by which the national standards conflicting with the (dow) 2022-02-12 document have to be withdrawn

This document supersedes EN 55016-1-4:2010.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CENELEC shall not be held responsible for identifying any or all such patent rights.

Endorsement notice

The text of the International Standard CISPR 16-1-4:2019 was approved by CENELEC as a European Standard without any modification.

In the official version, for Bibliography, the following notes have to be added for the standards indicated:

IEC 61169-8	NOTE	Harmonized as EN 61169-8
IEC 61000-4-20	NOTE	Harmonized as EN 61000-4-20

EN IEC 55016-1-4:2019 (E)

Annex ZA

(normative)

Normative references to international publications with their corresponding European publications

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

NOTE 1 Where an International Publication has been modified by common modifications, indicated by (mod), the relevant EN/HD applies.

NOTE 2 Up-to-date information on the latest versions of the European Standards listed in this annex is available here: www.cenelec.eu.

Publication	Year	Title	<u>EN/HD</u>	<u>Year</u>
CISPR 16-1-1	-	Specification for radio disturbance and immunity measuring apparatus and methods - Part 1-1: Radio disturbance and immunity measuring apparatus - Measuring apparatus	-	-
CISPR 16-1-5	2014	Specification for radio disturbance and immunity measuring apparatus and methods - Part 1-5: Radio disturbance and immunity measuring apparatus - Antenna calibration sites and reference test sites for 5 MHz to 18 GHz	EN 55016-1-5	2015
+ A1	2016		+ A1	2017
CISPR 16-1-6	2014	Specification for radio disturbance and immunity measuring apparatus and methods - Part 1-6: Radio disturbance and immunity measuring apparatus - EMC antenna calibration	EN 55016-1-6	2015
+ A1	2017		+ A1	2017
CISPR 16-2-3	2016	Specification for radio disturbance and immunity measuring apparatus and methods - Part 2-3: Methods of measurement of disturbances and immunity - Radiated disturbance measurements	EN 55016-2-3	2017
CISPR TR 16-3	-	Specification for radio disturbance and immunity measuring apparatus and methods Part 3: CISPR technical reports	-	-
CISPR 16-4-2	-	Specification for radio disturbance and immunity measuring apparatus and methods - Part 4-2: Uncertainties, statistics and limit modelling - Measurement instrumentation uncertainty	EN 55016-4-2	!-
IEC 60050-191	-	International Electrotechnical Vocabulary - Chapter 191: Dependability and quality of service	-	-

INTERNATIONAL STANDARD

NORME INTERNATIONALE

INTERNATIONAL SPECIAL COMMITTEE ON RADIO INTERFERENCE COMITÉ INTERNATIONAL SPÉCIAL DES PERTURBATIONS RADIOÉLECTRIQUES

Specification for radio disturbance and immunity measuring apparatus and methods –

Part 1-4: Radio disturbance and immunity measuring apparatus – Antennas and test sites for radiated disturbance measurements

Spécifications des méthodes et des appareils de mesure des perturbations radioélectriques et de l'immunité aux perturbations radioélectriques – Partie 1-4: Appareils de mesure des perturbations radioélectriques et de l'immunité aux perturbations radioélectriques – Antennes et emplacements d'essai pour les mesures des perturbations rayonnées

THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2019 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord écrit de l'IEC ou du Comité national de l'IEC du pays du demandeur. Si vous avez des questions sur le copyright de l'IEC ou si vous désirez obtenir des droits supplémentaires sur cette publication, utilisez les coordonnées ci-après ou contactez le Comité national de l'IEC de votre pays de résidence.

IEC Central Office 3, rue de Varembé CH-1211 Geneva 20 Switzerland Tel.: +41 22 919 02 11 info@iec.ch www.iec.ch

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigendum or an amendment might have been published.

IEC publications search - webstore.iec.ch/advsearchform

The advanced search enables to find IEC publications by a variety of criteria (reference number, text, technical committee,...). It also gives information on projects, replaced and withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublished

Stay up to date on all new IEC publications. Just Published details all new publications released. Available online and once a month by email.

IEC Customer Service Centre - webstore.iec.ch/csc

If you wish to give us your feedback on this publication or need further assistance, please contact the Customer Service Centre: sales@iec.ch.

Electropedia - www.electropedia.org

The world's leading online dictionary on electrotechnology, containing more than 22 000 terminological entries in English and French, with equivalent terms in 16 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online.

IEC Glossary - std.iec.ch/glossary

67 000 electrotechnical terminology entries in English and French extracted from the Terms and Definitions clause of IEC publications issued since 2002. Some entries have been collected from earlier publications of IEC TC 37, 77, 86 and CISPR.

A propos de l'IEC

La Commission Electrotechnique Internationale (IEC) est la première organisation mondiale qui élabore et publie des Normes internationales pour tout ce qui a trait à l'électricité, à l'électronique et aux technologies apparentées.

A propos des publications IEC

Le contenu technique des publications IEC est constamment revu. Veuillez vous assurer que vous possédez l'édition la plus récente, un corrigendum ou amendement peut avoir été publié.

Recherche de publications IEC -

webstore.iec.ch/advsearchform

La recherche avancée permet de trouver des publications IEC en utilisant différents critères (numéro de référence, texte, comité d'études,...). Elle donne aussi des informations sur les projets et les publications remplacées ou retirées.

IEC Just Published - webstore.iec.ch/justpublished

Restez informé sur les nouvelles publications IEC. Just Published détaille les nouvelles publications parues. Disponible en ligne et une fois par mois par email.

Service Clients - webstore.iec.ch/csc

Si vous désirez nous donner des commentaires sur cette publication ou si vous avez des questions contactez-nous: sales@iec.ch.

Electropedia - www.electropedia.org

Le premier dictionnaire d'électrotechnologie en ligne au monde, avec plus de 22 000 articles terminologiques en anglais et en français, ainsi que les termes équivalents dans 16 langues additionnelles. Egalement appelé Vocabulaire Electrotechnique International (IEV) en ligne.

Glossaire IEC - std.iec.ch/glossary

67 000 entrées terminologiques électrotechniques, en anglais et en français, extraites des articles Termes et Définitions des publications IEC parues depuis 2002. Plus certaines entrées antérieures extraites des publications des CE 37, 77, 86 et CISPR de l'IEC.

INTERNATIONAL STANDARD

NORME INTERNATIONALE

INTERNATIONAL SPECIAL COMMITTEE ON RADIO INTERFERENCE COMITÉ INTERNATIONAL SPÉCIAL DES PERTURBATIONS RADIOÉLECTRIQUES

Specification for radio disturbance and immunity measuring apparatus and methods – Part 1-4: Radio disturbance and immunity measuring apparatus – Antennas a

Part 1-4: Radio disturbance and immunity measuring apparatus – Antennas and test sites for radiated disturbance measurements

Spécifications des méthodes et des appareils de mesure des perturbations radioélectriques et de l'immunité aux perturbations radioélectriques – Partie 1-4: Appareils de mesure des perturbations radioélectriques et de l'immunité aux perturbations radioélectriques – Antennes et emplacements d'essai pour les mesures des perturbations rayonnées

INTERNATIONAL ELECTROTECHNICAL COMMISSION

COMMISSION ELECTROTECHNIQUE INTERNATIONALE

ICS 33.100.10; 33.100.20

ISBN 978-2-8322-6261-0

Warning! Make sure that you obtained this publication from an authorized distributor. Attention! Veuillez vous assurer que vous avez obtenu cette publication via un distributeur agréé.

 Registered trademark of the International Electrotechnical Commission Marque déposée de la Commission Electrotechnique Internationale
 – 2 –

CISPR 16-1-4:2019 © IEC 2019

CONTENTS

FC	DREWO	RD	8
1	Scop	e	.10
2	Norm	ative references	.10
3	Term	s, definitions and abbreviated terms	.11
	3.1	Terms and definitions	.11
	3.2	Abbreviated terms	.15
4	Anter	nnas for measurement of radiated radio disturbance	.16
	4.1	General	.16
	4.2	Physical parameter (measurand) for radiated disturbance measurements	.16
	4.3	Antennas for the frequency range 9 kHz to 150 kHz	.17
	4.3.1	General	.17
	4.3.2	Magnetic field antenna	.17
	4.3.3	Shielding of loop antenna	.17
	4.4	Antennas for the frequency range 150 kHz to 30 MHz	.17
	4.4.1	Electric field antenna	. 17
	4.4.2	Magnetic field antenna	.18
	4.4.3	Balance and electric field discrimination of antennas	.18
	4.5	Antennas for the frequency range 30 MHz to 1 000 MHz	.18
	4.5.1	General	.18
	4.5.2	Low-uncertainty antenna for use if there is an alleged non-compliance to the electric disturbance field strength limit	.18
	4.5.3	Antenna characteristics	.18
	4.5.4	Balance of antenna	.20
	4.5.5	Cross-polar response of antenna	.22
	4.6	Antennas for the frequency range 1 GHz to 18 GHz	.23
	4.6.1	General	.23
	4.6.2	Receive antenna	.23
	4.7	Special antenna arrangements – large-loop antenna system	.25
5	Test range	sites for measurement of radio disturbance field strength for the frequency e of 9 kHz to 30 MHz	.25
6	Test	sites for measurement of radio disturbance field strength for the frequency	26
	6 1	General	26
	6.2	OATS	.20
	621	General	26
	6.2.2	Weather-protection enclosure	.26
	6.2.3	Obstruction-free area	.26
	6.2.4	Radio-frequency ambient environment of a test site	.27
	6.2.5	Ground plane	.28
	6.3	Suitability of other test sites	.28
	6.3.1	Other ground-plane test sites	.28
	6.3.2	Test sites without ground plane (FAR)	.28
	6.4	Test site validations	.29
	6.4.1	General	.29
	6.4.2	Overview of test site validations	.30
	6.5	Basic parameters of the NSA method for OATS and SAC	. 30
	6.5.1	General equation and table of theoretical NSA values	.30

	6.5.2	Antenna calibration	34
	6.6	Reference site method for OATS and SAC	34
	6.6.1	General	34
	6.6.2	Antennas not permitted for RSM measurements	35
	6.6.3	Determination of the antenna pair reference site attenuation on a	
		REFTS	35
	6.6.4	Determination of the antenna pair reference site attenuation using an	
	- -	averaging technique on a large OATS	36
	6.7	Validation of an OATS by the NSA method	39
	6.7.1	Discrete frequency method	39
	6.7.2	Swept frequency method	40
	6.8	Validation of a weather-protection-enclosed OATS or a SAC	41
	6.9	Possible causes for exceeding site acceptability limits	43
	6.10	Site validation for FARS	44
	6.10		44
	6.10	2 RSM for FAR sites	48
	6.10	3 NSA method for FAR sites	50
	6.10	4 Site validation criteria for FAR sites	52
	6.11	Evaluation of set-up table and antenna tower	52
	6.11	1 General	52
_	6.11	2 Evaluation procedure for set-up table influences	53
1	l est rand	sites for measurement of radio disturbance field strength for the frequency	54
	7 1		54 54
	7.1	Beference test site	
	73	Test site validation	55 55
	7.3	General	55 55
	7.3.1	Acceptance criterion for site validation	55 56
	7 /		50 56
	7 / 1	Concret	50 56
	7.4.1		50 57
	7.4.2	Antonnos and tost aquipment for the Susaura regiprocal tost procedure	57 50
	7.4.3	B Antennas and test equipment for the SVSWR reciprocal test procedure	59
	7.5		60
	7.5.1		00
	7.5.2	(Figure 23)	60
	7.5.3	Descriptions of Sygwe additional measurement positions (Figure 24)	61
	754	Summary of Sygwic measurement positions	62
	76	Sycwic site validation – standard test procedure	65
	77	Syswe site validation – reciprocal test procedure using an isotropic field	
		probe	66
	7.8	SVSWR conditional measurement position requirements	67
	7.9	SVSWR site validation test report	68
	7.10	Limitations of the SVSWR site validation method	68
	7.11	Alternative test sites	69
8	Com	mon mode absorption devices	69
-	8 1	General	60
	8.2	CMAD S-parameter measurements	00 0A
	83	CMAD test iig	03 03
	8.4	Measurement method using the TRL calibration	03 70
	U . 1		

		- 4 -	CISPR 16-1-4:2019 © IEC 2019
8.	.5	Specification of ferrite clamp-type CMAD	
8.	.6	CMAD performance (degradation) check using spec	trum analyzer and
	-	tracking generator	
9	Rever	berating chamber for total radiated power measurer	nent75
9.	.1	General	
9.	.2	Chamber	
	9.2.1	Chamber size and shape	
	9.2.2	Door, openings in walls, and mounting bracke	ts75
	9.2.3	Stirrers	
	9.2.4	Test for the efficiency of the stirrers	76
	9.2.5	Coupling attenuation	77
10	TEM (cells for immunity to radiated disturbance measurem	ent78
Anne	ex A (r	normative) Parameters of antennas	
A.	.1	General	
A.	.2	Preferred antennas	
	A.2.1	General	
	A.2.2	Calculable antenna	
	A.2.3	Low-uncertainty antennas	
A.	.3	Simple dipole antennas	
	A.3.1	General	
	A.3.2	Tuned dipole	81
	A.3.3	Shortened dipole	81
A.	.4	Broadband antenna parameters	
	A.4.1	General	
	A.4.2	Antenna type	
	A.4.3	Specification of the antenna	
	A.4.4	Antenna calibration	
	A.4.5	Antenna user information	
Anne	ex B ()	(XX) (Void)	
Anne	ex C (r	normative) Large-loop antenna system for magnetic	field induced-current
nica.	1	Conoral	39
	ו. כ		00
C C	.∠ 3	Construction of a large-loop antenna (LLA)	86
C C	.5	Validation of an LLA	
C C	. 4 5	Construction of the LLAS verification dipole antenna	92
C C	.5	Conversion factors	03
Anne rang	ex D (r e of 3	normative) Construction details for open area test s 0 MHz to 1 000 MHz (see Clause 6)	ites in the frequency 96
D	.1	General	96
D	.2	Ground plane construction	
_	D.2.1	Material	
	D.2.2	Roughness	
D	.3	Services to EUT	
D	.4	Weather-protection enclosure construction	
	D.4.1	Materials and fasteners	
	D.4.2	Internal arrangements	
	D.4.3	Size	
	D.4.4	Uniformity with time and weather	

D.5 Turntable and set-up table98
D.6 Receive antenna mast installation99
Annex E (xxx) (Void)100
Annex F (informative) Basis for \pm 4 dB site acceptability criterion (see Clause 6)101
F.1 General101
F.2 Error analysis101
Annex G (informative) Examples of uncertainty budgets for site validation of a COMTS using RSM with a calibrated antenna pair (see 6.6)103
G.1 Quantities to be considered for antenna pair reference site attenuation calibration using the averaging technique
G.2 Quantities to be considered for antenna pair reference site attenuation calibration using a REFTS
G.3 Quantities to be considered for COMTS validation using an antenna pair reference site attenuation
Bibliography 106
Figure 1 – Schematic of radiation from EUT reaching an LPDA antenna directly and via ground reflections at a 3 m site, showing the beamwidth half-angle, φ , at the reflected ray19
Figure 2 – RX antenna E-plane radiation pattern example, with limit area shaded for 3 m distance and 2 m EUT width
Figure 3 – Determination of maximum useable EUT width using half-power beamwidth24
Figure 4 – Determination of maximum useable EUT height using half-power beamwidth25
Figure 5 – Obstruction-free area of a test site with a turntable (see 6.2.3)
Figure 6 – Obstruction-free area with stationary EUT (see 6.2.3)
Figure 7 – Test point locations for 3 m and 10 m test distances

Figure 7 – Test point locations for 3 m and 10 m test distances	36
Figure 8 – Paired test point locations for all test distances	38
Figure 9 – Example of paired test point selection for a test distance of 10 m	38
Figure 10 – Illustration of an investigation of influence of antenna mast on AAPR	39
Figure 11 – Typical antenna positions for a weather-protected OATS or a SAC – vertical polarization validation measurements	42
Figure 12 – Typical antenna positions for a weather-protected OATS or a SAC – horizontal polarization validation measurements	42
Figure 13 – Typical antenna positions for a weather-protected OATS or a SAC – vertical polarization validation measurements for a smaller EUT	43
Figure 14 – Typical antenna positions for a weather-protected OATS or a SAC – horizontal polarization validation measurements for a smaller EUT	43
Figure 15 – Measurement positions for FAR site validation	46
Figure 16 – Example of one measurement position and antenna tilt for FAR site validation	48
Figure 17 – Typical quasi free-space test site reference SA measurement set-up	50
Figure 18 – Theoretical free-space NSA as a function of frequency for different measurement distances [see Equation (16)]	52
Figure 19 – Position of the antenna relative to the edge above a rectangle set-up table (top view)	54
Figure 20 – Antenna position above the set-up table (side view)	54
Figure 21 – Transmit antenna E-plane radiation pattern example (this example is for informative purposes only)	58
Figure 22 – Transmit antenna H-plane radiation pattern (this example is for informative purposes only)	59

- 6 -

Figure 23 – <i>S</i> VSWR measurement positions in a horizontal plane (see 7.5.2 for description)	60
Figure 24 – SVSWR positions (height requirements)	62
Figure 25 – S _{VSWR} conditional measurement position requirements	68
Figure 26 – Definition of the reference planes inside the test jig	70
Figure 27 – The four configurations for the TRL calibration	72
Figure 28 – Limits for the magnitude of S_{11} , measured according to the provisions of 8.1 to 8.3	73
Figure 29 – Example of a 50 Ω adaptor construction in the vertical flange of the jig	74
Figure 30 – Example of a matching adaptor with balun or transformer	74
Figure 31 – Example of a matching adaptor with resistive matching network	75
Figure 32 – Example of a typical paddle stirrer	76
Figure 33 – Range of coupling attenuation as a function of frequency for a chamber using the stirrer shown in Figure 16	77
Figure A.1 – Short dipole antenna factors for $R_{L} = 50 \Omega$	82
Figure C.1 – The LLAS, consisting of three mutually perpendicular large-loop antennas	88
Figure C.2 – An LLA containing two opposite slits, positioned symmetrically with respect to the current probe C	89
Figure C.3 – Construction of an LLA slit	89
Figure C.4 – Example of an LLA slit construction using a strap of printed circuit board to obtain a rigid construction	90
Figure C.5 – Construction of the metal box containing the current probe	90
Figure C.6 – Example showing the routing of several cables from an EUT to minimize capacitive coupling from the leads to the LLAS	91
Figure C.7 – The eight positions of the LLAS verification dipole during validation of an LLA	92
Figure C.8 – Validation factor for an LLA of 2 m diameter	92
Figure C.9 – Construction of the LLAS verification dipole antenna	93
Figure C.10 – Conversion factors C_{dA} [for conversion into dB(μ A/m)] and C_{dV} [for conversion into dB(μ V/m)] for two standard measuring distances d	95
Figure C.11 – Sensitivity S_{D} of a large-loop antenna with diameter D relative to a large-loop antenna having a diameter of 2 m	95
Figure D.1 – The Rayleigh criterion for roughness in the ground plane	97
Table 1 – Site validation methods applicable for OATS, OATS-based, SAC, and FAR site types	29
Table 2 – Theoretical normalized site attenuation, A _N – recommended geometries for broadband antennas	32
Table 3 – Example template for AAPR data sets	35
Table 4 – RSM frequency steps	. 35
Table 5 – Maximum dimensions of test volume versus test distance	44
Table 6 – Frequency ranges and step sizes for FAR site validation	48
Table 7 – SVSWR measurement position designations	63
Table 8 – SVSWR reporting requirements	68
Table D.1 – Maximum roughness for 3 m, 10 m and 30 m measurement distances	97
Table F.1 – Error budget	101

Table G.1 – Antenna pair reference site attenuation calibration using the large-OATS averaging technique	. 103
Table G.2 – Antenna pair reference site attenuation calibration using REFTS	. 104
Table G.3 – COMTS validation using an antenna pair reference site attenuation	. 105

- 7 -

- 8 -

CISPR 16-1-4:2019 © IEC 2019

INTERNATIONAL ELECTROTECHNICAL COMMISSION

INTERNATIONAL SPECIAL COMMITTEE ON RADIO INTERFERENCE

SPECIFICATION FOR RADIO DISTURBANCE AND IMMUNITY MEASURING APPARATUS AND METHODS –

Part 1-4: Radio disturbance and immunity measuring apparatus – Antennas and test sites for radiated disturbance measurements

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights

This fourth edition cancels and replaces the third edition published in 2010, Amendment 1:2012 and Amendment 2:2017. This edition constitutes a technical revision.

This edition includes the following significant technical changes with respect to the previous edition:

 provisions are added to address test site validation in the frequency range from 30 MHz to 1000 MHz using the reference site method, to take into account the receive antenna radiation pattern in the frequency range from 1 GHz to 18 GHz, and further details on test site validation using the NSA method with broadband antennas in the frequency range from 30 MHz to 1 000 MHz.

- 9 -

International Standard CISPR 16-1-4 has been prepared by CISPR subcommittee A: Radiointerference measurements and statistical methods.

It has the status of a basic EMC publication in accordance with IEC Guide 107, *Electromagnetic compatibility – Guide to the drafting of electromagnetic compatibility publications.*

The text of this International Standard is based on the following documents:

FDIS	Report on voting
CIS/A/1262/FDIS	CIS/A/1275/RVD

Full information on the voting for the approval of this International Standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all parts of CISPR 16 series, under the general title *Specification for radio disturbance and immunity measuring apparatus and methods*, can be found on the IEC website.

The committee has decided that the contents of the base publication and its amendments will remain unchanged until the stability date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

- 10 -

CISPR 16-1-4:2019 © IEC 2019

SPECIFICATION FOR RADIO DISTURBANCE AND IMMUNITY MEASURING APPARATUS AND METHODS –

Part 1-4: Radio disturbance and immunity measuring apparatus – Antennas and test sites for radiated disturbance measurements

1 Scope

This part of CISPR 16 specifies the characteristics and performance of equipment for the measurement of radiated disturbances in the frequency range 9 kHz to 18 GHz. Specifications for antennas and test sites are included.

NOTE In accordance with IEC Guide 107, CISPR 16-1-4 is a basic EMC publication for use by product committees of the IEC. As stated in Guide 107, product committees are responsible for determining the applicability of the EMC standard. CISPR and its sub-committees are prepared to cooperate with product committees in the evaluation of the value of particular EMC tests for specific products.

The requirements of this publication apply at all frequencies and for all levels of radiated disturbances within the CISPR indicating range of the measuring equipment.

Methods of measurement are covered in Part 2-3, further information on radio disturbance is given in Part 3, and uncertainties, statistics and limit modelling are covered in Part 4 of CISPR 16.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

CISPR 16-1-1, Specification for radio disturbance and immunity measuring apparatus and methods – Part 1-1: Radio disturbance and immunity measuring apparatus – Measuring apparatus

CISPR 16-1-5:2014, Specification for radio disturbance and immunity measuring apparatus and methods – Part 1-5: Radio disturbance and immunity measuring apparatus – Antenna calibration sites and reference test sites for 5 MHz to 18 GHz CISPR 16-1-5:2014/AMD1:2016

CISPR 16-1-6:2014, Specification for radio disturbance and immunity measuring apparatus and methods – Part 1-6: Radio disturbance and immunity measuring apparatus – EMC antenna calibration CISPR 16-1-6:2014/AMD1:2017

CISPR 16-2-3:2016, Specification for radio disturbance and immunity measuring apparatus and methods – Part 2-3: Methods of measurement of disturbances and immunity – Radiated disturbance measurements

CISPR TR 16-3, Specification for radio disturbance and immunity measuring apparatus and methods – Part 3: CISPR technical reports

CISPR 16-1-4:2019 © IEC 2019 - 11 -

CISPR 16-4-2, Specification for radio disturbance and immunity measuring apparatus and methods – Part 4-2: Uncertainties, statistics and limit modelling – Measurement instrumentation uncertainty

IEC 60050-161, International Electrotechnical Vocabulary. Chapter 161: Electromagnetic compatibility

koniec náhľadu – text ďalej pokračuje v platenej verzii STN