STN

Analýza plynov Príprava kalibračných plynných zmesí dynamickými metódami Časť 1: Všeobecné aspekty (ISO 6145-1: 2019)

STN EN ISO 6145-1

38 5615

Gas analysis - Preparation of calibration gas mixtures using dynamic methods - Part 1: General aspects (ISO 6145-1:2019)

Táto norma obsahuje anglickú verziu európskej normy. This standard includes the English version of the European Standard.

Táto norma bola oznámená vo Vestníku ÚNMS SR č. 03/20

Obsahuje: EN ISO 6145-1:2019, ISO 6145-1:2019

Oznámením tejto normy sa ruší STN EN ISO 6145-1 (38 5615) z februára 2009

STN EN ISO 6145-1: 2020

EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM

EN ISO 6145-1

October 2019

ICS 71.040.40

Supersedes EN ISO 6145-1:2008

English Version

Gas analysis - Preparation of calibration gas mixtures using dynamic methods - Part 1: General aspects (ISO 6145-1:2019)

Analyse des gaz - Préparation des mélanges de gaz pour étalonnage à l'aide de méthodes dynamiques -Partie 1 : Aspects généraux (ISO 6145-1:2019) Gasanalyse - Herstellung von Kalibriergasgemischen mit Hilfe von dynamische Verfahren - Teil 1: Kalibrierverfahren (ISO 6145-1:2019)

This European Standard was approved by CEN on 1 September 2019.

CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom.

EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels

EN ISO 6145-1:2019 (E)

Contents	Page
Furonaan foraword	2
European foreword	3

European foreword

This document (EN ISO 6145-1:2019) has been prepared by Technical Committee ISO/TC 158 "Analysis of gases" in collaboration with Technical Committee CEN/SS N21 "Gaseous fuels and combustible gas" the secretariat of which is held by CCMC.

This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by April 2020, and conflicting national standards shall be withdrawn at the latest by April 2020.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN shall not be held responsible for identifying any or all such patent rights.

This document supersedes EN ISO 6145-1:2008.

According to the CEN-CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom.

Endorsement notice

The text of ISO 6145-1:2019 has been approved by CEN as EN ISO 6145-1:2019 without any modification.

INTERNATIONAL STANDARD

ISO 6145-1

Third edition 2019-09

Gas analysis — Preparation of calibration gas mixtures using dynamic methods —

Part 1: **General aspects**

Analyse des gaz — Préparation des mélanges de gaz pour étalonnage à l'aide de méthodes dynamiques —

Partie 1: Aspects généraux

STN EN ISO 6145-1: 2020

ISO 6145-1:2019(E)

COPYRIGHT PROTECTED DOCUMENT

© ISO 2019

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Fax: +41 22 749 09 47 Email: copyright@iso.org Website: www.iso.org

Website: www.iso.org
Published in Switzerland

Con	Contents					
Forew	ord					
Intro	luction		v			
1	Scope		1			
2	-					
		mative references				
3	Terms	s and definitions	1			
4	Symbols					
5	Princi	iple	2			
	5.1	General				
	5.2	Suitability of the method to the application				
	5.3	Piston pumps				
	5.4 5.5	Continuous (syringe) injection				
	5.6	Critical flow orifices				
	5.7	Thermal mass flow controller				
	5.8	Diffusion	5			
	5.9	Saturation				
	5.10	Permeation method				
	5.11 5.12	Electrochemical generation Summary				
_						
6		nmendations for handling the dynamic system				
	6.1	Safety considerations				
		6.1.2 Reactions with dynamic system materials				
	6.2	Quality considerations	8			
		6.2.1 Purity of parent gas standards or "zero" gas				
		6.2.2 Gas handling	8			
7	Calibr	ation methods of a dynamic system				
	7.1	Generalities on the calibration				
	7.2	Calibration of each element				
		7.2.1 General7.2.2 Calibration devices for flow rate: Principle and uncertainty				
	7.3	Single point calibration of a dynamic system by comparison with reference gas	1			
	710	mixtures	13			
	7.4	Calibration certificate				
8	Calcul	lation of the composition and its uncertainty	13			
	8.1	General	13			
	8.2	Calculations for volumetric methods				
		8.2.1 General				
	0.2	8.2.2 Formulae Calculations for gravimetric methods				
	8.3	8.3.1 General				
		8.3.2 Formula				
0	Coura					
9		es of uncertainty and uncertainty of the final mixture				
10		cation				
	10.1 10.2	PrincipleVerification criteria				
	10.2	Recalibration criteria				
Anns-						
	-	mative) Calculation details				
Annex	B (info	ormative) Atomic weights and molar masses	21			

STN EN ISO 6145-1: 2020

ISO 6145-1:2019(E)

Bibliography 23

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see the following URL: www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 158, Gas analysis.

This third edition cancels and replaces the second edition (ISO 6145-1:2003), which has been technically revised. The main changes compared to the previous edition are as follows.

- The techniques for the preparation of gas mixtures are described in an abbreviated manner since there is no need to repeat the text and formulae from each of the different parts of the ISO 6145 series. However, a summary table (<u>Table 1</u>) presenting the advantages and limitations of each method has been introduced.
- Recommendations regarding the handling of the dynamic mixing systems and quality considerations have been added.
- The methods and instruments to calibrate a dynamic system have changed and are better described.
- The calculations to obtain composition and uncertainties are more detailed, and the different ways
 of mixing gases (volume flow rates or mass flow rates) have been taken into account.
- Clauses on certificates (7.4) and verification (Clause 10) have been added.

A list of all parts in the ISO 6145 series can be found on the ISO website.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html.

Introduction

This document is one of a series of standards which describes the various dynamic methods for the preparation of calibration gas mixtures.

Several techniques are available and the choice between them is decided based on the desired gas composition range, the consistency of equipment with the application and the required level of uncertainty. This document aids with making an informed choice by listing all the advantages and limitations of the methods.

The main techniques used for the preparation of gas mixtures are:

- a) piston pumps;
- b) continuous injection;
- c) capillary;
- d) critical orifices;
- e) thermal mass-flow controllers;
- f) diffusion;
- g) saturation;
- h) permeation;
- i) electrochemical generation.

In dynamic methods, a gas A is introduced at a known constant volume or mass flow rate into a known constant flow rate of a complementary gas B. Gases A and B can be either pure gases or gas mixtures. The preparation process can be continuous (such as mass flow controllers, permeation tube) or pseudocontinuous (such as piston pump).

The dynamic preparation techniques produce a continuous flow of calibration gas mixtures into the analyser but do not generally allow the build-up of a reserve by storage under pressure.

INTERNATIONAL STANDARD

Gas analysis — Preparation of calibration gas mixtures using dynamic methods —

Part 1:

General aspects

1 Scope

This document gives a brief overview of each of the dynamic techniques which are described in detail in the subsequent parts of ISO 6145. This document provides basic information to support an informed choice for one or another method for the preparation of calibration gas mixtures. It also describes how these methods can be linked to national measurement standards to establish metrological traceability for the composition of the prepared gas mixtures.

Since all techniques are dynamic and rely on flow rates, this document describes the calibration process by measurement of each individual flow rate generated by the device.

Methods are also provided for assessing the composition of the generated gas mixtures by comparison with an already validated calibration gas mixture.

This document provides general requirements for the use and operation of dynamic methods for gas mixture preparation. It also includes the necessary expressions for calculating the calibration gas composition and its associated uncertainty.

Gas mixtures obtained by these dynamic methods can be used to calibrate or control gas analysers.

The storage of dynamically prepared gas mixtures into bags or cylinders is beyond the scope of this document.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 6143, Gas analysis — Comparison methods for determining and checking the composition of calibration gas mixtures

ISO 7504, Gas analysis — Vocabulary

ISO 12963, Gas analysis — Comparison methods for the determination of the composition of gas mixtures based on one- and two-point calibration

ISO 14912, Gas analysis — Conversion of gas mixture composition data

ISO 19229, Gas analysis — Purity analysis and the treatment of purity data

koniec náhľadu – text ďalej pokračuje v platenej verzii STN