Všeobecné zásady spoľahlivosti konštrukcií STN P ISO 2394 73 0021 General principles on reliability for structures Principes généraux de la fiabilité des constructions Allgemeine Anforderungen an die Zuverlässigkeit von Bauwerken Táto norma obsahuje anglickú verziu ISO 2394: 2015. This standard includes the English version of ISO 2394: 2015. #### 130561 #### **Anotácia** Táto medzinárodná norma poskytuje základ, založený na spoľahlivosti a rizikách, na rozhodovanie pri navrhovaní a posudzovaní konštrukcií tak na účely tvorby noriem, ako aj v kontexte špecifických projektov. Zásady uvedené v tejto medzinárodnej norme platia pre väčšinu budov, infraštruktúru a inžinierske stavby, bez ohľadu na účel ich používania alebo kombinácie použitých materiálov. V osobitných prípadoch potenciálne extrémnych dôsledkov poškodenia konštrukcie (napr. jadrové elektrárne alebo vrtné plošiny) sa pri aplikácii tejto medzinárodnej normy vyžadujú špecifické úpravy a riešenia konštrukčných detailov. Účelom tejto medzinárodnej normy je poskytovať podklady technickým komisiám, ktoré zodpovedajú za tvorbu medzinárodných noriem, národných noriem alebo predpisov na zhotovovanie v súlade s daným zámerom a v súvislosti s konkrétnou krajinou. Táto medzinárodná norma opisuje, ako sa môžu zásady rizika a spoľahlivosti využiť na podporu rozhodnutí týkajúcich sa navrhovania a posudzovania konštrukcií a systémov zahŕňajúcich konštrukcie počas ich životného cyklu. Uplatňujú sa tri rôzne, ale súvisiace úrovne prístupu, a to prístup založený na hodnotení rizika, spoľahlivostný a polopravdepodobnostný prístup. Všeobecné zásady možno použiť na navrhovanie kompletných konštrukcií (budov, mostov, priemy-selných stavieb, atď.), konštrukčných prvkov a spojov tvoriacich konštrukcie a základy. Zásady tejto medzinárodnej normy možno použiť tiež na jednotlivé po sebe idúce etapy výstavby, na manipuláciu s konštrukčnými prvkami, tak na ich montáž a všetky práce na stavenisku, ako aj na používanie konštrukcií počas ich návrhovej životnosti, vrátane údržby, obnovy a vyradenia z prevádzky. Riziko a spoľahlivosť sú koncepty, ktoré umožňujú zohľadniť a opísať zaťaženie, odozvu konštrukcie, trvanlivosť, vlastnosti počas životného cyklu, následky, pravidlá navrhovania, remeselnú zručnosť, postupy riadenia kvality a národné požiadavky, ktoré sú všetky navzájom závislé. Používanie tejto medzinárodnej normy si vyžaduje poznatky nad rámec jednotlivých článkov a príloh. Je zodpovednosťou užívateľa zabezpečiť, aby tieto poznatky boli dostupné a uplatnené. #### Národný predhovor #### Upozornenie pre používateľov Na základe odporúčania TK 111 je táto predbežná STN do vydania jej národnej prílohy určená na informáciu a overenie. #### Vypracovanie normy Spracovateľ: Úrad pre normalizáciu, metrológiu a skúšobníctvo SR, Bratislava Technická komisia: TK 111 Uplatňovanie a používanie eurokódov # INTERNATIONAL STANDARD ISO 2394 Fourth edition 2015-03-01 ## General principles on reliability for structures Principes généraux de la fiabilité des constructions ISO 2394:2015(E) #### COPYRIGHT PROTECTED DOCUMENT © ISO 2015 All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org Published in Switzerland | Contents | | | | | |----------|-----------------------|--|-----|--| | Fore | eword | | vi | | | Intr | oductio | on | vii | | | 1 | Scon | oe | 1 | | | 2 | Terms and definitions | | | | | | 2.1 | General terms | | | | | 2.2 | Terms related to design and assessment | | | | | 2.3 | Terms related to actions, action effects, and environmental influences | 8 | | | | 2.4 | Terms related to structural response, resistance, material properties, and | | | | | | geometrical quantities | 11 | | | 3 | Svm | bols | 12 | | | | 3.1 | General | 12 | | | | 3.2 | Latin upper case letters | | | | | 3.3 | Latin lower case letters | | | | | 3.4 | Greek letters | | | | | 3.5 | Subscripts | 14 | | | 4 | Fundamentals | | | | | _ | 4.1 | General | | | | | 4.2 | Aims and requirements to structures | | | | | | 4.2.1 Fundamental requirements to structures | | | | | | 4.2.2 Target performance level | 15 | | | | 4.3 | Conceptual basis | 16 | | | | | 4.3.1 Decisions concerning structures | | | | | | 4.3.2 Structural performance modelling | | | | | | 4.3.3 Uncertainty and treatment of knowledge | | | | | 4.4 | Approaches | | | | | | 4.4.1 General | | | | | | 4.4.2 Risk-informed and reliability-based approaches | 18 | | | | | 4.4.3 Semi-probabilistic approaches | | | | | 4.5 | Documentation | 20 | | | 5 | | ormance modelling | | | | | 5.1 | General | | | | | | 5.1.1 Structural performance and limit state concept | | | | | | 5.1.2 Performance and performance indicators | | | | | | 5.1.3 Basic performance requirement and design situations | | | | | = 0 | 5.1.4 Levels of verification | | | | | 5.2 | Performance model | | | | | | 5.2.1 General | | | | | | 5.2.2 Time-dependent aspects | | | | | F 2 | 5.2.3 System aspects | | | | | 5.3 | Limit states | | | | | | 5.3.1 Ultimate limit state | | | | | | 5.3.3 Condition limit states | | | | | | 5.3.4 Limit state function | | | | | | J.J.T LIHIL STATE TUHCHOH | | | #### ISO 2394:2015(E) | Contents | | | | | |----------|--|---|----|--| | 6 | Uncertainty representation and modelling | | | | | | 6.1 General | | | | | | | 6.1.1 Types of uncertainty | | | | | | 6.1.2 Treatment of uncertainty | | | | | | 6.1.3 Interpretation of probability | | | | | | 6.1.4 Probabilistic models | | | | | | 6.1.5 Population/outcome space | 26 | | | | | 6.1.6 Hierarchical modelling of uncertainty | | | | | 6.2 | Models for structural analysis | 27 | | | | | 6.2.1 General | | | | | | 6.2.2 Actions and environmental influences | 28 | | | | | 6.2.3 Geometrical properties | 30 | | | | | 6.2.4 Material properties | | | | | | 6.2.5 Responses and resistances | 31 | | | | 6.3 | Models for consequences | 33 | | | | 6.4 | Model uncertainty | 34 | | | | 6.5 | Experimental models | 34 | | | | 6.6 | Updating of probabilistic models | 35 | | | 7 | Diele | -informed decision making | | | | / | 7.1 | General | | | | | 7.1 | System identification | | | | | 7.2 | System modelling | | | | | 7.3
7.4 | Risk quantification | | | | | 7.5 | Decision optimization and risk acceptance | | | | | | | | | | 8 | Reliability-based decision making | | | | | | 8.1 | General | | | | | 8.2 | Decisions based on updated probability measures | | | | | 8.3 | Systems reliability versus component reliability | | | | | 8.4 | Target failure probabilities | | | | | 8.5 | Calculation of the probability of failure | | | | | | 8.5.1 General | | | | | | 8.5.2 Time-invariant reliability problems | | | | | | 8.5.3 Transformation of time-variant into time-invariant problems | | | | | | 8.5.4 Out-crossing approach | | | | | 8.6 | Implementation of probability-based design | 41 | | | 9 | Semi-probabilistic method | | | | | | 9.1 | General | | | | | 9.2 | Basic principles | | | | | 9.3 | Representative and characteristic values | 42 | | | | 7.0 | 9.3.1 Actions | | | | | | 9.3.2 Resistances | | | | | 9.4 | Safety formats | | | | | | 9.4.1 General | | | | | | 9.4.2 Partial factor method | | | | | | 9.4.3 The design value method | | | | | 9.5 | Verification in case of cumulative damage | | | | Anne | | formative) Quality management | | | | | - | formative) Lifetime management of structural integrity | | | | | | formative) Design based on observations and experimental models | | | | Anne | x D (in | formative) Reliability of geotechnical structures | 71 | | | Anne | x E (in | formative) Code calibration | 79 | | #### ISO 2394:2015(E) | Contents | Page | |---|------| | Annex F (informative) Structural robustness | 88 | | Annex G (informative) Optimization and criterion on life safety | 100 | | Bibliography | 110 | #### Foreword ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives). Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents). Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement. For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the WTO principles in the Technical Barriers to Trade (TBT), see the following URL: Foreword — Supplementary information. The committee responsible for this document is ISO/TC 98, *Bases for design of structures*, SC 2, *Reliability of structures*. This fourth edition cancels and replaces the third edition (ISO 2394:1998), which has been technically revised. #### Introduction The present fourth edition of this International Standard is intended to reflect advances in the common basis for decision making related to load-bearing structures relevant to the construction industry. Advances range from the development of systematic and rational treatment of risk to implementation of reliability-based design through codes and standards. Compliance with this International Standard should therefore promote harmonization of design practice internationally and unification between the respective codes and standards such as for actions and resistances for the respective structural materials. The principles and appropriate instruments to ensure adequate levels of reliability provide for special classes of structures or projects where the common experience base need to be extended in a rational manner. In particular, a risk framework has been introduced which is scenario based, facilitates unified modelling approaches over different applications, accounts for consequences of both a direct and indirect nature, and has emphasis on robustness. Whereas requirements to safety and reliability in the previous edition of this International Standard took their basis in efficiency requirements of a heuristic character, these are now based on risk considerations and socio-economics. This, in turn, facilitates a more relevant use of the International Standard in the context of sustainable societal developments and adaptation for application of the International Standard in different nation states in accordance with economic capacity and preferences. The present International Standard, thus, enables the possibility to regulate, verify, and document the adequate safe performance of structures and also to consider them in a broader sense as part of societal systems. The International Standard provides for approaches at three levels, namely the following: - risk informed; - reliability based; - semi-probabilistic. The methodical basis for this edition of ISO 2394 is described in the Probabilistic Model Code^[8] and Risk Assessment in Engineering — Principles, System Representation and Risk Criteria^[9] by the Joint Committee on Structural Safety (JCSS), and EN 1990 (2007), where the reader will find additional information of relevance for its use. Informative Annexes are included to this International Standard as a support to its users in the interpretations and use of the principles contained in its clauses. #### General principles on reliability for structures #### 1 Scope This International Standard constitutes a risk- and reliability-informed foundation for decision making concerning design and assessment of structures both for the purpose of code making and in the context of specific projects. The principles presented in this International Standard cover the majority of buildings, infrastructure, and civil engineering works, whatever the nature of their application and use or combination of the materials used¹⁾. The application of this International Standard will require specific adaptation and detailing in special cases where there are potentially extreme consequences of failure²⁾. This International Standard is intended to serve as a basis for those committees responsible for the task of preparing international standards, national standards, or codes of practice in accordance with given objectives and context in a particular country. The present International Standard describes how the principles of risk and reliability can be utilized to support decisions related to the design and assessment of structures and systems involving structures over their service life. Three different but related levels of approach are facilitated, namely, a risk-informed, a reliability-based, and a semi-probabilistic approach. The general principles are applicable to the design of complete structures (buildings, bridges, industrial structures, etc.), the structural elements and joints making up the structures and the foundations. The principles of this International Standard are also applicable to the successive stages in construction, the handling of structural elements, their erection, and all work on-site, as well as the use of structures during their design working life, including maintenance and rehabilitation, and decommissioning. Risk and reliability are concepts accounting for and describing actions, structural response, durability, life-cycle performance, consequences, design rules, workmanship, quality control procedures, and national requirements, all of which are mutually dependent. The application of this International Standard necessitates knowledge beyond what is contained in the Clauses and the Annexes. It is the responsibility of the user to ensure that this knowledge is available and applied. koniec náhľadu – text ďalej pokračuje v platenej verzii STN