сты	Technológia palivových článkov Časť 8-101: Systémy na akumuláciu energie používajúce moduly palivových článkov v reverznom režime	STN EN IEC 62282-8-101
21 N	Skúšobné postupy pre prevádzkové vlastnosti jednotlivých článkov a zostáv s tuhými oxidmi vrátane reverzibilnej prevádzky	36 4512

Fuel cell technologies - Part 8-101: Energy storage systems using fuel cell modules in reverse mode - Test procedures for the performance of solid oxide single cells and stacks, including reversible operation

Táto norma obsahuje anglickú verziu európskej normy. This standard includes the English version of the European Standard.

Táto norma bola oznámená vo Vestníku ÚNMS SR č. 08/20

Obsahuje: EN IEC 62282-8-101:2020, IEC 62282-8-101:2020

131509

Úrad pre normalizáciu, metrológiu a skúšobníctvo Slovenskej republiky, 2020 Slovenská technická norma a technická normalizačná informácia je chránená zákonom č. 60/2018 Z. z. o technickej normalizácii.

EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM

April 2020

ICS 27.070

English Version

Fuel cell technologies - Part 8-101: Energy storage systems using fuel cell modules in reverse mode - Test procedures for the performance of solid oxide single cells and stacks, including reversible operation (IEC 62282-8-101:2020)

Technologies des piles à combustible - Partie 8-101: Système de stockage de l'énergie utilisant des modules à piles à combustible en mode inversé - Procédures d'essai pour la performance des cellules élémentaires et des piles à oxyde solide, comprenant le fonctionnement réversible (IEC 62282-8-101:2020) Brennstoffzellentechnologien - Teil 8-101: Energiespeichersysteme mit Brennstoffzellenmodulen im reversiblen Betrieb - Prüfverfahren zum Leistungsverhalten von Festoxid-Einzelzellen und -Stacks einschließlich reversiblem Betrieb (IEC 62282-8-101:2020)

This European Standard was approved by CENELEC on 2020-03-24. CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.

Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CENELEC member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CENELEC member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.

CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom.

European Committee for Electrotechnical Standardization Comité Européen de Normalisation Electrotechnique Europäisches Komitee für Elektrotechnische Normung

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels

© 2020 CENELEC All rights of exploitation in any form and by any means reserved worldwide for CENELEC Members.

European foreword

The text of document 105/765/FDIS, future edition 1 of IEC 62282-8-101, prepared by IEC/TC 105 "Fuel cell technologies" was submitted to the IEC-CENELEC parallel vote and approved by CENELEC as EN IEC 62282-8-101:2020.

The following dates are fixed:

•	latest date by which the document has to be implemented at national	(dop)	2020-12-24
	level by publication of an identical national standard or by endorsement		

• latest date by which the national standards conflicting with the (dow) 2023-03-24 document have to be withdrawn

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CENELEC shall not be held responsible for identifying any or all such patent rights.

Endorsement notice

The text of the International Standard IEC 62282-8-101:2020 was approved by CENELEC as a European Standard without any modification.

In the official version, for Bibliography, the following notes have to be added for the standards indicated:

IEC 62282-8-102 NOTE Harmonized as EN IEC 62282-8-102

IEC 62282-8-201 NOTE Harmonized as EN IEC 62282-8-201

EN IEC 62282-8-101:2020 (E)

Annex ZA

(normative)

Normative references to international publications with their corresponding European publications

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

NOTE 1 Where an International Publication has been modified by common modifications, indicated by (mod), the relevant EN/HD applies.

NOTE 2 Up-to-date information on the latest versions of the European Standards listed in this annex is available here: www.cenelec.eu.

Publication	<u>Year</u>	<u>Title</u>	<u>EN/HD</u>	<u>Year</u>
IEC 60050-485	-	International Electrotechnical Vocabulary - Part 485: Fuel cell technologies	-	-
IEC 61515	2016	Mineral insulated metal-sheathed thermocouple cables and thermocouples	EN 61515	2016
IEC 60584-1	-	Thermocouples - Part 1: EMF specifications and tolerances	EN 60584-1	-
IEC 60584-3	-	Thermocouples - Part 3: Extension and compensating cables - Tolerances and identification system	EN 60584-3	-
ISO 5168	-	Measurement of fluid flow - Procedures for the evaluation of uncertainties	-	-
ISO 6141	-	Gas analysis - Contents of certificates for calibration gas mixtures	EN ISO 6141	-
ISO 6142-1	-	Gas analysis - Preparation of calibration gas mixtures - Part 1: Gravimetric method for Class I mixtures	EN ISO 6142-1	-
ISO 6143	-	Gas analysis - Comparison methods for determining and checking the composition of calibration gas mixtures	EN ISO 6143	-
ISO 6145-7	-	Gas analysis - Preparation of calibration gas mixtures using dynamic volumetric methods - Part 7: Thermal mass-flow controllers	EN ISO 6145-7	-
ISO 6974	series	Natural gas - Determination of composition and associated uncertainty by gas chromatography	EN ISO 6974	series

EN IEC 62282-8-101:2020 (E)

 ISO 7066-2
 Assessment of uncertainty in the

 calibration and use of flow measurement devices - Part 2: Non-linear calibration relationships

 ISO 8756
 Air quality - Handling of temperature, EN ISO 8765 - pressure and humidity data

INTERNATIONAL STANDARD

NORME INTERNATIONALE

Fuel cell technologies – Part 8-101: Energy storage systems using fuel cell modules in reverse mode – Test procedures for the performance of solid oxide single cells and stacks, including reversible operation

Technologies des piles à combustible -

Partie 8-101: Système de stockage de l'énergie utilisant des modules à piles à combustible en mode inversé – Procédures d'essai pour la performance des cellules élémentaires et des piles à oxyde solide, comprenant le fonctionnement réversible

THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2020 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord écrit de l'IEC ou du Comité national de l'IEC du pays du demandeur. Si vous avez des questions sur le copyright de l'IEC ou si vous désirez obtenir des droits supplémentaires sur cette publication, utilisez les coordonnées ci-après ou contactez le Comité national de l'IEC de votre pays de résidence.

IEC Central Office 3, rue de Varembé CH-1211 Geneva 20 Switzerland Tel.: +41 22 919 02 11 info@iec.ch www.iec.ch

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigendum or an amendment might have been published.

IEC publications search - webstore.iec.ch/advsearchform

The advanced search enables to find IEC publications by a variety of criteria (reference number, text, technical committee,...). It also gives information on projects, replaced and withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublished

Stay up to date on all new IEC publications. Just Published details all new publications released. Available online and once a month by email.

IEC Customer Service Centre - webstore.iec.ch/csc

If you wish to give us your feedback on this publication or need further assistance, please contact the Customer Service Centre: sales@iec.ch.

Electropedia - www.electropedia.org

The world's leading online dictionary on electrotechnology, containing more than 22 000 terminological entries in English and French, with equivalent terms in 16 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online.

IEC Glossary - std.iec.ch/glossary

67 000 electrotechnical terminology entries in English and French extracted from the Terms and Definitions clause of IEC publications issued since 2002. Some entries have been collected from earlier publications of IEC TC 37, 77, 86 and CISPR.

A propos de l'IEC

La Commission Electrotechnique Internationale (IEC) est la première organisation mondiale qui élabore et publie des Normes internationales pour tout ce qui a trait à l'électricité, à l'électronique et aux technologies apparentées.

A propos des publications IEC

Le contenu technique des publications IEC est constamment revu. Veuillez vous assurer que vous possédez l'édition la plus récente, un corrigendum ou amendement peut avoir été publié.

Recherche de publications IEC -

webstore.iec.ch/advsearchform

La recherche avancée permet de trouver des publications IEC en utilisant différents critères (numéro de référence, texte, comité d'études,...). Elle donne aussi des informations sur les projets et les publications remplacées ou retirées.

IEC Just Published - webstore.iec.ch/justpublished

Restez informé sur les nouvelles publications IEC. Just Published détaille les nouvelles publications parues. Disponible en ligne et une fois par mois par email.

Service Clients - webstore.iec.ch/csc

Si vous désirez nous donner des commentaires sur cette publication ou si vous avez des questions contactez-nous: sales@iec.ch.

Electropedia - www.electropedia.org

Le premier dictionnaire d'électrotechnologie en ligne au monde, avec plus de 22 000 articles terminologiques en anglais et en français, ainsi que les termes équivalents dans 16 langues additionnelles. Egalement appelé Vocabulaire Electrotechnique International (IEV) en ligne.

Glossaire IEC - std.iec.ch/glossary

67 000 entrées terminologiques électrotechniques, en anglais et en français, extraites des articles Termes et Définitions des publications IEC parues depuis 2002. Plus certaines entrées antérieures extraites des publications des CE 37, 77, 86 et CISPR de l'IEC.

INTERNATIONAL STANDARD

NORME INTERNATIONALE

Fuel cell technologies – Part 8-101: Energy storage systems using fuel cell modules in reverse mode – Test procedures for the performance of solid oxide single cells and stacks, including reversible operation

Technologies des piles à combustible -

Partie 8-101: Système de stockage de l'énergie utilisant des modules à piles à combustible en mode inversé – Procédures d'essai pour la performance des cellules élémentaires et des piles à oxyde solide, comprenant le fonctionnement réversible

INTERNATIONAL ELECTROTECHNICAL COMMISSION

COMMISSION ELECTROTECHNIQUE INTERNATIONALE

ICS 27.070

ISBN 978-2-8322-7705-8

Warning! Make sure that you obtained this publication from an authorized distributor. Attention! Veuillez vous assurer que vous avez obtenu cette publication via un distributeur agréé.

 Registered trademark of the International Electrotechnical Commission Marque déposée de la Commission Electrotechnique Internationale
 - 2 -

IEC 62282-8-101:2020 © IEC 2020

CONTENTS

FC	REWO	RD		7
IN	TRODU	стю	Ν	9
1	Scop	e		. 10
2	Norm	native	references	. 10
3	Term	s, def	initions, abbreviated terms and symbols	.11
	3.1	Term	s and definitions	. 11
	3.2	Abbre	eviated terms and symbols	. 17
	3.2.1		Abbreviated terms	. 17
	3.2.2	ę	Symbols	. 17
	3.3	Flow	rates	.21
4	Gene	eral sa	fety conditions	.21
5	Test	envirc	onment	.22
	5.1	Gene	ral	.22
	5.2	Cell		.23
	5.3	Stack	(.23
	5.4	Expe	rimental set-up	.24
	5.4.1	. (General	.24
	5.4.2	I	Electrode gas control equipment	.25
	5.4.3	-	Thermal management equipment	.25
	5.4.4	I	Electric power supply/load control equipment	.25
	5.4.5	I	Measurement and data acquisition equipment	.25
	5.4.6	5	Safety equipment	.25
	5.4.7	(Compression force control equipment	.25
	5.4.8	I	Pressure control equipment	.25
	5.5	Interf	ace between test object and experimental set-up	.26
	5.6	Para	meter control and measurement	.27
	5.7	Meas	surement uncertainty of TIPs and TOPs	.28
	5.8	Moun	nting of the test object into the experimental set-up	.28
	5.9	Stabi	lity criteria	.29
6	Meas	surem	ent instruments and methods	.29
	6.1	Gene	eral	.29
	6.2	Instru	ument uncertainty	.29
	6.3	Reco	mmended measurement instruments and methods	.30
	6.3.1	I	Electrode inlet gas flow rate measurement	. 30
	6.3.2	I	Electrode gas composition measurement	.30
	6.3.3	I	Electrode gas temperature measurement	.31
	6.3.4	I	Electrode gas pressure measurement	.31
	6.3.5	I	Electrode exhaust gas flow rate measurement	.31
	6.3.6	(Cell/stack assembly unit voltage measurement	.32
	6.3.7	(Cell/stack assembly unit current measurement	.32
	6.3.8	(Cell/stack assembly unit temperature measurement	.32
	6.3.9	(Compression force measurement	.32
	6.3.1	0 -	Total impedance measurement	.32
	6.3.1	1 /	Ambient condition measurement	.32
	6.4	lest	conditions and manufacturer recommendations	.33
	6.4.1	9	Start-up and shut-down conditions	. 33

0

	6.4.2	Range of test conditions	.33
	6.4.3	Stabilization, initialization conditions and stable state	.33
	6.4.4	Dwell time, equilibration time, acquisition time	.33
	6.5	Data acquisition method	.34
7	Test	procedures and computation of results	.34
	7.1	General	. 34
	7.2	Current-voltage characteristics test	.34
	7.2.1	Objective of this test	.34
	7.2.2	Test method	. 34
	7.2.3	Data post-processing	. 35
	7.3	Effective reactant utilization test	.35
	7.3.1	Objective of this test	.35
	7.3.2	Test method	. 35
	7.3.3	Data post-processing	. 36
	7.4	Durability test	. 36
	7.4.1	Objective of this test	.36
	7.4.2	Test method	. 37
	7.4.3	Data post-processing	.37
	7.5	Temperature sensitivity test	.37
	7.5.1	Objective of this test	. 37
	7.5.2	Test method	. 38
	7.5.3	Data post-processing	. 38
	7.6	Separation of resistance components test via electrochemical impedance	
		spectroscopy	. 39
	7.6.1	Objective of this test	. 39
	7.6.2	Test method	. 39
	7.6.3	Data post-processing	.40
	7.7	Current cycling durability test	.40
	7.7.1	Objective of this test	.40
	7.7.2	Test method	.41
	7.7.3	Data post-processing	.41
	7.8	Thermal cycling test	.41
	7.8.1	Objective	.41
	7.8.2	Test method	.41
	7.8.3	Data post-processing	.42
	7.9	Pressurized test	.42
	7.9.1	Objective of this test	.42
	7.9.2	Test method	.42
	7.9.3	Data post-processing	.43
8	Test	report	.43
	8.1	General	.43
	8.2	Report items	.43
	8.3	Test unit data description	.43
	8.4	Test condition description	.44
	8.5	Test data description	.44
	8.6	Uncertainty evaluation	.44
A	nnex A (normative) Detailed test procedures	.45
	A 1	Test objective	45
	A.2	Test set-up	45

- 4 -

IEC 62282-8-101:2020 © IEC 2020

A.3	Current-voltage characteristics test (7.2)	.46
A.3.1	1 Test input parameters (TIPs)	.46
A.3.2	2 Test output parameters (TOPs)	.46
A.3.3	3 Derived quantities	.47
A.3.4	4 Measurement of current-voltage characteristics	.47
A.4	Effective reactant utilization test (7.3)	.49
A.4.1	1 Test input parameters (TIPs)	.49
A.4.2	2 Test output parameters (TOPs)	.51
A.4.3	3 Derived quantities	.51
A.4.4	4 Measurement of effective reactant utilization	.52
A.5	Durability test (7.4)	. 53
A.5.1	1 Test input parameters (TIPs)	.53
A.5.2	2 Test output parameters (TOPs)	.53
A.5.3	3 Derived quantities	. 54
A.5.4	4 Measurement of durability	.54
A.6	Temperature sensitivity test (7.5)	.55
A.6.1	1 Test input parameters (TIPs)	.55
A.6.2	2 Test output parameters (TOPs)	.56
A.6.3	3 Derived quantities	.56
A.6.4	4 Measurement of temperature sensitivity	.57
A.7	Separation of resistance components test via electrochemical impedance spectroscopy (7.6)	. 58
A.7.1	1 Test input parameters (TIPs)	.58
A.7.2	2 Test output parameters (TOPs)	.58
A.7.3	3 Derived quantities	.59
A.7.4	4 Measurement of resistance components via EIS	.59
A.7.5	5 Measuring range of frequencies	.59
A.8	Current cycling durability test (7.7)	.60
A.8.1	1 Test input parameters (TIPs)	.60
A.8.2	2 Test output parameters (TOPs)	.60
A.8.3	3 Derived quantities	.61
A.8.4	4 Measurement of current cycling durability	.61
A.9	Thermal cycling test (7.8)	.64
A.9.1	1 Test input parameters (TIPs)	.64
A.9.2	2 Test output parameters (TOPs)	.65
A.9.3	3 Derived quantities	.65
A.9.4	4 Measurement of thermal cycling	.66
A.10	Pressurized test (7.9)	.68
A.10	0.1 Test input parameters (TIPs)	.68
A.10	.2 Test output parameters (TOPs)	.69
A.10	0.3 Derived quantities	.69
A.10	.4 Measurement of pressurized test	.69
Annex B	(informative) Guidelines for electrochemical impedance spectroscopy (EIS)	.71
B.1	General principles	.71
B.2	EIS test equipment and set-up	.72
B.3	Representation of results	.73
B.4	Analysis and simulation of data	.75
Annex C	(normative) Formulae for calculation of utilization values	.76
C.1	Generic formulae	.76

- 5 -

C.2	Degradation	76
C.3	Area-specific resistance (ASR)	// 77
Bibliograp	hv	78
Bioliograp	· , ·	
Figure 1 – consisting	Exploded schematic representation of a planar-type single cell test object of a SOC in a cell housing	23
Figure 2 – RU includi	Schematic representation of a planar-geometry SOC stack test object with N ng supporting structure (top and bottom plates)	24
Figure 3 – assembly	Schematic representation of a test environment for a SOC cell/stack unit	24
Figure 4 –	Test environment with interfaces between SOC cell and experimental set-up	26
Figure 5 – set-up	Test environment with interfaces between SOC stack and experimental	27
Figure A.1 characteri	 Qualitative representation of TIPs when carrying out a current-voltage stics test for combined (SOFC and SOEC) operation 	48
Figure A.2 procedure	 Schematic representation of the current-voltage characteristics test for two consecutive set points k and k + 1 	48
Figure A.3 modes	– Schematic representation of a J - V curve in both electrolysis and fuel cell	49
Figure A.4 utilization of hydroge	- Qualitative representation of TIPs when carrying out an effective reactant test varying the negative electrode reactant flow rate $(q_{V,neg,in})$, consisting and nitrogen	52
Figure A.5 galvanosta	– Qualitative representation of TIPswhen carrying out a durability test (in atic mode)	55
Figure A.6 sensitivity	– Qualitative representation of TIPs when carrying out a temperature test	57
Figure A.7 durability f	 Qualitative representation of TIPs when carrying out a current cycling sest 	63
Figure A.8 conditions	– Current profile of a SOEC system with fast switch on/off at thermoneutral	64
Figure A.9 conditions	- Current profile of a SOEC system with fast switch on/off at exothermal	64
Figure A.1 conditions	0 – Current profile of a load-following SOEC system and thermoneutral	64
Figure A.1 conditions	1 – Current profile of a load-following SOEC system and exothermal	64
Figure A.1 600 °C (in	2 – General evolution of TIPs during test: continuous thermal cycling above this case with zero electric current)	67
Figure A.1 gas and cu	3 – General evolution of TIPs during test: thermal cycling below 600 °C with urrent changes (coupling with operation at constant current for instance)	68
Figure B.1 (EIS) of a	 Input/output signals during electrochemical impedance spectroscopy solid oxide fuel/electrolysis cell 	72
Figure B.2 oxide fuel	 Test set-up for electrochemical impedance spectroscopy of a planar solid cell/electrolysis stack with 5 RUs 	73
Figure B.3 against ex	 Bode plot representing the modulus of impedance and phase angle citation frequency 	74
Figure B.4 impedance	 Nyquist plot, representing conjugate imaginary part against real part of 	75

- 6 - IEC 62282-8-101:2020 © IEC 2020

Table 1 – Symbols	. 18
Table 2 – Stability criteria for TIPs and TOPs as a reference	29
Table 3 – Instrument uncertainty for each quantity to be measured	30
Table A.1 – Test input parameters (TIPs) for current-voltage characteristics test	46
Table A.2 – Test output parameters (TOPs) for current-voltage characteristics test	47
Table A.3 – Derived quantities for current-voltage characteristics test	47
Table A.4 – Test input parameters (TIPs) for negative electrode reactant utilization test	50
Table A.5 – Test input parameters (TIPs) for positive electrode reactant utilization test	50
Table A.6 – Test output parameters (TOPs) for effective reactant utilization test	51
Table A.7 – Derived quantities for effective reactant utilization test	52
Table A.8 – Test input parameters (TIPs) for durability test	53
Table A.9 – Test output parameters (TOPs) for durability test	54
Table A.10 – Derived quantities for constant load durability test	54
Table A.11 – Test input parameters (TIPs) for temperature sensitivity test	55
Table A.12 – Test output parameters (TOPs) for temperature sensitivity test	56
Table A.13 – Derived quantities for temperature sensitivity test	56
Table A.14 – Test input parameters (TIPs) for EIS test	58
Table A.15 – Test output parameters (TOPs) for EIS test	59
Table A.16 – Derived quantities for EIS test	59
Table A.17 – Test input parameters (TIPs) for current cycling durability test within a single operating mode (fuel cell or electrolysis)	60
Table A.18 – Test input parameters (TIPs) for current cycling durability test covering both operating modes (fuel cell and electrolysis)	60
Table A.19 – Test output parameters (TOPs) for current cycling durability test	61
Table A.20 – Derived quantities for current cycling durability test	61
Table A.21 – Test input parameters (TIPs) for thermal cycling	65
Table A.22 – Test output parameters (TOPs) for thermal cycling	65
Table A.23 – Derived quantities for thermal cycling test	66
Table A.24 – Test input parameters (TIPs) for pressurized testing	69
Table A.25 – Test output parameters (TOPs) for pressurized testing	69
Table A.26 – Derived quantities for pressurized test	69
Table C.1 – Generic formulae	76

- 7 -

INTERNATIONAL ELECTROTECHNICAL COMMISSION

FUEL CELL TECHNOLOGIES -

Part 8-101: Energy storage systems using fuel cell modules in reverse mode – Test procedures for the performance of solid oxide single cells and stacks, including reversible operation

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organizations.
- The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 62282-8-101 has been prepared by IEC technical committee 105: Fuel cell technologies.

The text of this International Standard is based on the following documents:

FDIS	Report on voting
105/765/FDIS	105/779/RVD

Full information on the voting for the approval of this International Standard can be found in the report on voting indicated in the above table.

This document has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all parts in the IEC 62282 series, published under the general title *Fuel cell technologies*, can be found on the IEC website.

- 8 -

IEC 62282-8-101:2020 © IEC 2020

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

- 9 -

INTRODUCTION

This document describes test methods for a single cell or stack (denoted as "cell/stack" hereafter) that are intended for application to energy storage systems using solid oxide fuel cells (SOFC) in combination with solid oxide electrolysis cells (SOEC), or directly using reversible solid oxide cells (Re-SOC, see Note in Clause 1). The test methods aim to provide guidelines for the characterization of real-time performance and durability of the cell/stack.

SOFC, SOEC and Re-SOC have a broad range of geometries (e.g. planar, tubular and their variations) and size. As such, in general, peripherals like current collectors and gas manifolds are unique to each cell or stack and are often incorporated into a cell or stack to form one integrated unit. In addition, they tend to have a significant effect on the power generation characteristics of the cell or stack. This document therefore introduces as its subject "cell/stack assembly units", which are defined as those units containing not only a cell or a stack but also peripherals.

This document is generally applicable to all types or geometries of SOFC, SOEC and Re-SOC, unless where explicitly mentioned.

IEC 62282-8 (all parts) aims to develop performance test methods for power storage and buffering systems based on electrochemical modules (combining electrolysis and fuel cells, in particular reversible fuel cells), taking into consideration both options of re-electrification and substance (and heat) production for sustainable integration of renewable energy sources.

Under the general title "Energy storage systems using fuel cell modules in reverse mode", the IEC 62282-8 series will consist of the following parts:

- IEC 62282-8-101: Test procedures for the performance of solid oxide single cells and stacks, including reversible operation
- IEC 62282-8-102: Test procedures for the performance of single cells and stacks with proton exchange membranes, including reversible operation
- IEC 62282-8-103¹: Alkaline single cell and stack performance including reversible operation
- IEC 62282-8-201: Test procedures for the performance of power-to-power systems
- IEC 62282-8-202²: Power-to-power systems Safety
- IEC 62282-8-300 series³: *Power-to-substance systems*

As a priority dictated by the emerging needs for industry and opportunities for technological development, IEC 62282-8-101, IEC 62282-8-102 and IEC 62282-8-201 have been initiated jointly and as a priority. These documents are presented as a package to highlight the need for an integrated approach as regards the system application (i.e. a solution for energy storage) and its fundamental constituent components (i.e. fuel cells operated in reverse or reversible mode).

IEC 62282-8-103, IEC 62282-8-202 and IEC 62282-8-300 (all parts) are suggested but are left for initiation at a later stage.

¹ Under consideration.

² Under consideration.

³ Under consideration.

- 10 -

IEC 62282-8-101:2020 © IEC 2020

FUEL CELL TECHNOLOGIES -

Part 8-101: Energy storage systems using fuel cell modules in reverse mode – Test procedures for the performance of solid oxide single cells and stacks, including reversible operation

1 Scope

This part of IEC 62282 addresses solid oxide cell (SOC) and stack assembly unit(s). It provides for testing systems, instruments and measuring methods to test the performance of SOC cell/stack assembly units for energy storage purposes. It assesses performance in fuel cell mode, in electrolysis mode and/or in reversible operation.

This document is not applicable to small button cells that are designed for SOC material testing and provide no practical means of reactant utilization measurement, or to single-chamber SOC. This document is not intended to be applied to fuel cell/stack assembly units for power generation purposes only, since this is covered in IEC TS 62282-7-2. Therefore, test methods are not included in this document that are applicable to fuel cell mode only and that are already described in IEC TS 62282-7-2.

This document is intended for data exchanges in commercial transactions between cell/stack manufacturers and system developers or for acquiring data on a cell or stack in order to estimate the performance of a system based on it. Users of this document may selectively execute test items suitable for their purposes from those described in this document. Users can also substitute selected test methods of this document with equivalent test methods of IEC TS 62282-7-2 for SOC operation in fuel cell mode only.

NOTE 1 In the context of this document, the term "reversible" does not refer to the thermodynamic meaning of an ideal process. It is common practice in the fuel cell community to call the operation mode of a solid oxide cell that alternates between fuel cell mode and electrolysis mode "reversible".

NOTE 2 This document considers only steam electrolysis. Other reactants in electrolysis mode can be used, provided appropriate measures are taken for handling the specific reactants and products, and the guidelines as regards the measurement, control and post-test analysis of results are adapted accordingly.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60050-485, International Electrotechnical Vocabulary – Part 485: Fuel cell technologies (available at www.electropedia.org)

IEC 61515:2016, *Mineral insulated metal-sheathed thermocouple cables and thermocouples*

IEC 60584-1, Thermocouples – Part 1: EMF specifications and tolerances

IEC 60584-3, Thermocouples – Part 3: Extension and compensating cables – Tolerances and identification system

ISO 5168, Measurement of fluid flow – Procedures for the evaluation of uncertainties

ISO 6141, Gas analysis – Contents of certificates for calibration gas mixtures

IEC 62282-8-101:2020 © IEC 2020 - 11 -

ISO 6142-1, Gas analysis – Preparation of calibration gas mixtures – Part 1: Gravimetric method for Class I mixtures

ISO 6143, Gas analysis – Comparison methods for determining and checking the composition of calibration gas mixtures

ISO 6145-7, Gas analysis – Preparation of calibration gas mixtures using dynamic volumetric methods – Part 7: Thermal mass-flow controllers

ISO 6974 (all parts), Natural gas – Determination of composition with defined uncertainty by gas chromatography

ISO 7066-2, Assessment of uncertainty in the calibration and use of flow measurement devices – Part 2: Non-linear calibration relationships

ISO 8756, Air quality – Handling of temperature, pressure and humidity data

koniec náhľadu – text ďalej pokračuje v platenej verzii STN