

Jemná keramika (špeciálna keramika, špeciálna technická keramika) Mechanické vlastnosti keramických kompozitov pri teplote okolia na vzduchu pri atmosférickom tlaku

Stanovenie pružných vlastností ultrazvukovou metódou (ISO 18610: 2016)

STN EN ISO 18610

72 7522

Fine ceramics (advanced ceramics, advanced technical ceramics) - Mechanical properties of ceramic composites at ambient temperature in air atmospheric pressure - Determination of elastic properties by ultrasonic technique (ISO 18610:2016)

Táto norma obsahuje anglickú verziu európskej normy. This standard includes the English version of the European Standard.

Táto norma bola oznámená vo Vestníku ÚNMS SR č. 07/21

Obsahuje: EN ISO 18610:2021, ISO 18610:2016

EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM

EN ISO 18610

January 2021

ICS 81.060.30

English Version

Fine ceramics (advanced ceramics, advanced technical ceramics) - Mechanical properties of ceramic composites at ambient temperature in air atmospheric pressure - Determination of elastic properties by ultrasonic technique (ISO 18610:2016)

Céramiques techniques (céramiques avancées, céramiques techniques avancées) - Propriétés mécaniques des céramiques composites à température ambiante sous air à pression atmosphérique - Détermination des propriétés élastiques par méthode ultrasonore (ISO 18610:2016)

Hochleistungskeramik - Mechanische Eigenschaften von keramischen Verbundwerkstoffen bei Raumtemperatur - Bestimmung der elastischen Eigenschaften durch eine Ultraschallmethode (ISO 18610:2016)

This European Standard was approved by CEN on 20 December 2020.

CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom.

EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels

EN ISO 18610:2021 (E)

Contents	Page
European foreword	

European foreword

The text of ISO 18610:2016 has been prepared by Technical Committee ISO/TC 206 "Fine ceramics" of the International Organization for Standardization (ISO) and has been taken over as EN ISO 18610:2021 by Technical Committee CEN/TC 184 "Advanced technical ceramics" the secretariat of which is held by DIN.

This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by July 2021, and conflicting national standards shall be withdrawn at the latest by July 2021.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN shall not be held responsible for identifying any or all such patent rights.

According to the CEN-CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom.

Endorsement notice

The text of ISO 18610:2016 has been approved by CEN as EN ISO 18610:2021 without any modification.

INTERNATIONAL STANDARD

ISO 18610

First edition 2016-09-15

Fine ceramics (advanced ceramics, advanced technical ceramics) — Mechanical properties of ceramic composites at ambient temperature in air atmospheric pressure — Determination of elastic properties by ultrasonic technique

Céramiques techniques (céramiques avancées, céramiques techniques avancées) — Propriétés mécaniques des céramiques composites à température ambiante sous air à pression atmosphérique — Détermination des propriétés élastiques par méthode ultrasonore

ISO 18610:2016(E)

COPYRIGHT PROTECTED DOCUMENT

© ISO 2016, Published in Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Ch. de Blandonnet 8 • CP 401 CH-1214 Vernier, Geneva, Switzerland Tel. +41 22 749 01 11 Fax +41 22 749 09 47 copyright@iso.org www.iso.org

Contents		Page	
Fore	word		iv
1	Scope		1
2	-	es	
3	Terms and definitions		
4	Principle		
5	Significance and use		
6	Test equipment		7
	6.1 Immersion tank with temperature measurement device		
		probes and test object	
		rand recording system	
7	Test object		7
8	Test object preparati	ion	8
9	Test procedure		8
		iency	
		of the test temperature	
	9.3 Reference test without test object		
	9.4 Measurement with the test object.		
		nination of the bulk density and thickness	
		ting of the test objectsition of different angles of incidence	
4.0	•		
10			
		the propagation velocities	
		the refracted angle, $ heta_{ m r}$	
	10.4 Identification of the elastic constants, C_{ii}		
	10.4.1 Basic o	considerations	10
		ation of $oldsymbol{\mathcal{C}}_{33}$	
		ation of \mathcal{C}_{22} , \mathcal{C}_{23} and \mathcal{C}_{44}	
		ation of C_{11} , C_{13} and C_{55}	
		ation of $oldsymbol{\mathcal{C}}_{12}$ and $oldsymbol{\mathcal{C}}_{66}$ he velocity curves	
		the quadratic deviation and the confidence interval	
		the engineering constants	
11			
	11.1 Measurements		
	11.2 Criterion of validity for the reliability of the C_{ij} components		
12		· · · · · · · · · · · · · · · · · · ·	
	_		
AIIII		ple of a presentation of the results for a material with	17
יו יוים			
RIDII	ograpny		19

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see the following URL: www.iso.org/iso/foreword.html.

The committee responsible for this document is ISO/TC 206, *Fine ceramics*.

Fine ceramics (advanced ceramics, advanced technical ceramics) — Mechanical properties of ceramic composites at ambient temperature in air atmospheric pressure — Determination of elastic properties by ultrasonic technique

1 Scope

This document specifies an ultrasonic method to determine the components of the elasticity tensor of ceramic matrix composite materials at room temperature. Young's moduli shear moduli and Poisson coefficients, can be determined from the components of the elasticity tensor.

This document applies to ceramic matrix composites with a continuous fibre reinforcement: unidirectional (1D), bidirectional (2D), and tridirectional (\times D, with 2 < \times ≤ 3) which have at least orthotropic symmetry, and whose material symmetry axes are known.

This method is applicable only when the ultrasonic wavelength used is larger than the thickness of the representative elementary volume, thus imposing an upper limit to the frequency range of the transducers used.

NOTE Properties obtained by this method might not be comparable with moduli obtained by ISO 15733, ISO 20504 and EN 12289.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 3611, Geometrical product specifications (GPS) — Dimensional measuring equipment: Micrometers for external measurements — Design and metrological characteristics

ISO/IEC 17025, General requirements for the competence of testing and calibration laboratories

EN 1389, Advanced technical ceramics — Ceramic composites — Physical properties — Determination of density and apparent porosity

koniec náhľadu – text ďalej pokračuje v platenej verzii STN