STN	Čisté priestory a príslušné riadené prostredie Časť 17: Aplikácia miery depozície častíc (ISO 14644-17: 2021)	STN EN ISO 14644-17
		12 5301

Cleanrooms and associated controlled environments - Part 17: Particle deposition rate applications (ISO 14644-17:2021)

Táto norma obsahuje anglickú verziu európskej normy. This standard includes the English version of the European Standard.

Táto norma bola oznámená vo Vestníku ÚNMS SR č. 07/21

Obsahuje: EN ISO 14644-17:2021, ISO 14644-17:2021

133019

Úrad pre normalizáciu, metrológiu a skúšobníctvo Slovenskej republiky, 2021 Slovenská technická norma a technická normalizačná informácia je chránená zákonom č. 60/2018 Z. z. o technickej normalizácii.

EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM

EN ISO 14644-17

February 2021

ICS 13.040.35

English Version

Cleanrooms and associated controlled environments - Part 17: Particle deposition rate applications (ISO 14644-17:2021)

Salles propres et environnements maîtrisés apparentés - Partie 17: Applications de taux de dépôt de particules (ISO 14644-17:2021) Reinräume und zugehörige Reinraumbereiche - Teil 17: Anwendungen zur Partikelabscheidungsrate (ISO 14644-17:2021)

This European Standard was approved by CEN on 6 January 2021.

CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom.

EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels

Contents

European foreword

European foreword

This document (EN ISO 14644-17:2021) has been prepared by Technical Committee ISO/TC 209 "Cleanrooms and associated controlled environments" in collaboration with Technical Committee CEN/TC 243 "Cleanroom technology" the secretariat of which is held by BSI.

This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by August 2021, and conflicting national standards shall be withdrawn at the latest by August 2021.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN shall not be held responsible for identifying any or all such patent rights.

According to the CEN-CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom.

Endorsement notice

The text of ISO 14644-17:2021 has been approved by CEN as EN ISO 14644-17:2021 without any modification.

INTERNATIONAL STANDARD

First edition 2021-02

Cleanrooms and associated controlled environments —

Part 17: **Particle deposition rate applications**

Salles propres et environnements maîtrisés apparentés — Partie 17: Applications de taux de dépôt de particules

Reference number ISO 14644-17:2021(E) ISO 14644-17:2021(E)

COPYRIGHT PROTECTED DOCUMENT

© ISO 2021

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Email: copyright@iso.org Website: www.iso.org

Published in Switzerland

Page

Contents

Forew	ord		iv
Introd	luctio	n	v
1	Scop	e	
2 Normative references			
3	Tern	is and definitions	1
4	Syml	pols	3
5	Part i 5.1 5.2 5.3	cle deposition rate methodology General Establishing the particle deposition rate required for control of particle deposition on vulnerable surfaces Particle deposition rate for demonstrating control of particle contamination	4 4 5
6	Measurement of particle deposition rate		5
7	Parti	cle deposition rate level	6
8	Docu	Imentation	7
Annex	A (in	formative) Measurement of particle deposition rate	8
Annex	B (in	formative) Examples of particle deposition rate measurements	12
Annex	c (in:	formative) Measurement of the particle obscuration	
Annex	t D (in conc	formative) Relationship between particle deposition rate and airborne entration of particles	19
Annex	E (int	formative) Assessment and control of particle deposition	20
Biblio	graph	ly	

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 209, *Cleanrooms and associated controlled environments*, in collaboration with the European Committee for Standardization (CEN) Technical Committee CEN/TC 243, *Cleanroom technology*, in accordance with the Agreement on technical cooperation between ISO and CEN (Vienna Agreement).

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at <u>www.iso.org/members.html</u>.

A list of all parts in the ISO 14644 series can be found on the ISO website.

Introduction

Cleanrooms and associated controlled environments are used to control contamination to levels appropriate for accomplishing contamination-sensitive activities. Products and processes that benefit from the control of contamination include those in industries such as aerospace, microelectronics, optics, nuclear, food, healthcare, pharmaceuticals, and medical devices.

ISO 14644-1:2015 considers airborne particles in cleanrooms and classifies cleanroom cleanliness by maximum permitted concentrations, and both ISO 14644-9:2012 and IEST-STD-CC1246E:2013 consider the concentration of surface particles. This document considers the rate of particle deposition onto cleanroom surfaces and is based on VCCN Guideline 9^[5]. The particle deposition rate is important, as the probability of contamination by airborne particles onto contamination sensitive, vulnerable surfaces, such as manufactured products, is directly related to the particle deposition rate.

ISO 14644-3:2019 gives an overview of methods for the determination of deposition of particles, larger or equal to 0,1 μ m. In this document, the focus is on the rate that macroparticles larger than 5 μ m deposit on surfaces, and the application of this information to controlling contamination in cleanrooms.

Various sizes of particles are generated in cleanrooms by personnel, machinery, tools, and processes, and distributed by air moving about the cleanroom. According to ISO 14644-1, cleanrooms and controlled environments with a particle class of the ISO 5 series, or cleaner, contain zero or very low concentrations of airborne particles larger than 5 μ m. However, in operating cleanrooms, many more particles in the size range of 5 μ m to 500 μ m, and greater, are found on surfaces than suggested by the classification limits of the size of particles given in ISO 14644-1. The main reason for this is that the largest particles in the range of sizes of macroparticles are not counted by particle counters because of deposition losses in sampling tubes, and at the entry to and within particle counters. Also, for the same reason, only a proportion of the smaller particles in the range of sizes is measured. In many cases, large particles cause contamination problems and their presence and potential for deposition onto contamination sensitive, vulnerable surfaces is best determined by measuring the particle deposition rate onto surfaces.

Particles smaller than 5 μ m are most likely to be removed from the cleanroom air by the ventilation system but, for particles above 10 μ m, more than 50 % is removed from the air by surface deposition. Above 40 μ m, more than 90 % is deposited (see Reference [6]). The dominant deposition mechanism of this size of particles has been shown to be gravitational but air turbulence and electrostatic attraction can also cause deposition (see Reference [7]). These deposited particles can be re-dispersed by walking and cleaning actions, but not by air velocities associated with the cleanroom air. It is important that these particles are removed by cleaning.

The presence and redistribution of particles >5 μ m in cleanrooms is mostly related to human or mechanical activity. In a cleanroom "at rest", there is likely to be little activity and dispersion of particles, and the concentration of particles larger than 5 μ m is close to zero with no significant particle deposition. Therefore, it is only in the "operational" occupancy state that the particle deposition rate should be considered.

The particle deposition rate is an attribute of a cleanroom or clean zone that determines the likely rate of deposition of airborne particles onto cleanroom surfaces, such as product or process area. Using a risk assessment, the acceptable amount of contamination of a vulnerable surface can be defined, and the particle deposition rate can then be obtained that ensures that this amount of contamination is not exceeded.

Methods of measuring the particle deposition rate in a cleanroom or clean zone are given in this document. These are used during the operation of the cleanroom to ensure that the required particle deposition rate is obtained, and for monitoring the cleanroom and clean zones to demonstrate continuous control of airborne contamination. Monitoring the particle deposition rate also enables PDR peaks to be correlated with activities so as to detect sources of contamination, and indicate what changes are required to working procedures to reduce the contamination risk.

ISO 14644-17:2021(E)

The particle deposition rate is the rate of deposition of particles onto surfaces over time, and can be calculated as the change of particle surface concentration per m² during the time of exposure in hours and can be expressed as Formula (1):

$$R_{\rm D} = \frac{C_{f_{\rm D}} - C_{i_{\rm D}}}{t_f - t_i} \tag{1}$$

where

- $R_{\rm D}$ is the deposition rate of particles equal to, or larger than *D* (µm) per m² per hour;
- $C_{f_{\rm D}}~~$ is the final particle surface concentration (number per m²) for particles equal to and larger than $D~(\mu{\rm m});$
- $C_{i_{D}}$ is the initial particle surface concentration (number per m²) for particles equal to and larger than D (µm);
- t_f is the final time of exposure (h);
- t_i is the initial time of exposure (h).

If the particle deposition rate is determined on, or in close proximity to, a vulnerable surface, such as product, then an estimate of the deposition of airborne particles onto the surface can be obtained by applying Formula (2):

$$N_{\rm D} = R_{\rm D} \cdot t \cdot a \tag{2}$$

where

- $N_{\rm D}$ number of deposited particles larger than or equal to particle size *D* (µm);
- *t* is the time the surface is exposed to particle deposition (h);
- a is the surface area exposed to airborne contamination (m²).

Some industries use cleanrooms to manufacture optical instruments and components, such as mirrors, lenses, and solar panels used in aerospace. The quality of these products is related to the amount of light absorbed or reflected by particles on the surface. Therefore, this document also considers particle obscuration rate of test surfaces exposed in cleanrooms in <u>Annex C</u>. Using the particle deposition rate of various particle sizes, the particle obscuration rate of airborne particles depositing onto a surface and obscuring light can be calculated and used in a similar way to the particle deposition rate to reduce the risk of surface contamination.

Cleanrooms and associated controlled environments —

Part 17: Particle deposition rate applications

1 Scope

This document gives direction on the interpretation and application of the results of the measurement of particle deposition rate on one or more vulnerable surfaces in a cleanroom as part of a contamination control programme. It provides some instructions on how to influence the particle deposition rate and reduce the risk of particle contamination on vulnerable surfaces.

This document gives information on how a cleanroom user can use the particle deposition rate measurements to determine limits that can be set for macroparticles on vulnerable surfaces. It also gives a risk assessment method by which an acceptable risk of deposition of particles onto vulnerable surfaces in a cleanroom can be established and, when this is not achieved, methods that can be used to reduce the particle deposition rate.

An alternative to the particle deposition rate is the particle obscuration rate which determines the rate of increase of coverage of particles onto an area of surface over time. The particle obscuration rate can be used in an analogous way to the particle deposition rate and the required particle obscuration rate for a specified surface can be calculated and the risk from deposited particles reduced.

This document does not:

- provide a method to classify a cleanroom with respect to particle deposition rate or particle obscuration rate;
- directly consider the deposition of microbe-carrying particles, although they can be treated as particles;
- give any consideration to surface deposition by contact as, for example, when personnel touch a
 product and contamination is transferred.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 14644-3:2019, Cleanrooms and associated controlled environments — Part 3: Test methods

koniec náhľadu – text ďalej pokračuje v platenej verzii STN