134161

TNI	Kozmická technika Návod na úroveň technologickej pripravenosti (TRL)	TNI CEN/CLC/TR 17603-11
		31 0540

Space engineering - Technology readiness level (TRL) guidelines

Táto technická normalizačná informácia obsahuje anglickú verziu CEN/CLC/TR 17603-11:2021. This Technical standard information includes the English version of CEN/CLC/TR 17603-11:2021.

Táto technická normalizačná informácia bola oznámená vo Vestníku ÚNMS SR č. 12/21

Úrad pre normalizáciu, metrológiu a skúšobníctvo Slovenskej republiky, 2022 Slovenská technická norma a technická normalizačná informácia je chránená zákonom č. 60/2018 Z. z. o technickej normalizácii.

TECHNICAL REPORT RAPPORT TECHNIQUE TECHNISCHER BERICHT

CEN/CLC/TR 17603-11

September 2021

ICS 49.140

English version

Space engineering - Technology readiness level (TRL) guidelines

Ingénierie spatiale - Guide d'utilisation des Niveaux de Maturité Technologique (NMT)

Raumfahrttechnik - Richtlinien zum technischen Reifegrad (TRL)

This Technical Report was approved by CEN on 26 March 2021. It has been drawn up by the Technical Committee CEN/CLC/JTC 5.

CEN and CENELEC members are the national standards bodies and national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom.

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels

© 2021 CEN/CENELEC All rights of exploitation in any form and by any means reserved worldwide for CEN national Members and for **CENELEC** Members.

TNI CEN/CLC/TR 17603-11: 2022

CEN/CLC/TR 17603-11:2021 (E)

Table of contents

Europ	ean Fo	reword	5
Introd	uction.		6
1 Scop	oe		7
2 Refe	rences		8
3 Tern	ns, defi	nitions and abbreviated terms	10
3.1	Terms	defined in other documents	10
3.2	Terms	specific to the present document	11
3.3	Abbrev	viated terms and symbols	11
4 TRL	history	and evolution	13
4.1	History	/ and evolution	13
4.2		nces between M95r and ISO 16290 standard as seen by ECSS bean interpretation)	13
4.3	TRL in	nplementation in ECSS system	14
4.4	TRL a	nd assessment basic principles	14
5 Tech	nology	readiness assessment (TRA) guidelines	17
5.1	Introdu	uction	17
5.2	Gener	al principles for technology readiness assessment	17
	5.2.1	TRL standard	17
	5.2.2	TRA pre-requisites	21
	5.2.3	Independent verification of the TRL	22
	5.2.4	Discipline specific TRA process	22
	5.2.5	Typical technology readiness assessment (TRA) process	22
	5.2.6	TRA criteria	23
	5.2.7	Viability of TRL progression	23
5.3	TRL e	valuation by level	24
	5.3.1	TRL 1: Basic principles observed and reported	24
	5.3.2	TRL 2: Technology concept and/or application formulated	24
	5.3.3	TRL 3: Analytical and experimental critical function and/or characteristic proof-of-concept	24

	5.3.4	TRL 4 : Component and/or breadboard functional verification in laboratory environment	25
	5.3.5	TRL 5 : Component and/or breadboard critical function verification in a relevant environment	26
	5.3.6	TRL 6: Model demonstrating the critical functions of the element in a relevant environment	27
	5.3.7	TRL 7 : Model demonstrating the element performance for the operational environment	28
	5.3.8	TRL 8 : Actual system completed and accepted for flight ("flight qualified")	28
	5.3.9	TRL 9: Actual system "flight proven" through successful mission operations	29
5.4	Guidelir	nes for other uses of TRLs in R&T&D activities	29
6 Imple	ementat	tion in projects	32
6.1		I	
6.2	Critical	functions and technologies in projects	33
	6.2.1	Overview	33
	6.2.2	Technology readiness status list (TRSL) and transference to critical item list	34
6.3	Techno	logy readiness assessment (TRA) in projects	34
6.4	Typical	levels linked to project phases and milestones	35
		nodel philosophy and technology demonstration and ent	39
7.1	Links w	ith model types and technology demonstration	39
	7.1.1	Link between TRL and model types	39
	7.1.2	Link between TRL and technology demonstrators	42
7.2	Re-asse	essment of TRL for re-use of element with existing TRA	44
	7.2.1	Technical guidelines	44
	7.2.2	Technology re-use in a new environment	46
Annex	A TRL	considerations for software	47
A.1		specific to the present annex	
A.2		L scale and software developments	
A.3	Basic principles		
A.4	•	TRL with Software	
A.5	Relatior	nship between TRL and criticality categories	56
Annex		considerations for EEE components	
Annex	C TRL	considerations for materials and manufacturing processes	59

Figures

Figure 4-1: Illustration of differences between M95r (European interpretation) and ECSS-E-AS-11	14
Figure 4-2: Evolution technology maturity	15
Figure 5-1: Illustration of a new RF transistor then RF amplifier progressing through TRL	21
Figure 5-2: Example of ESA technology activity template	30
Figure 5-3: Illustration of a Technology Roadmap	31
Figure 6-1: Risk versus TRL and complexity	33
Figure 6-2: Evolution of technology options during preliminary project phases	35
Figure 6-3: Project phases and generalised institutional expectation of TRA outcome	37
Figure 6-4: Project phases and generalised commercial expectation of TRA outcome	38

Tables

Table 5-1: TRL summary - Milestones and work achievement (adapted from ISO	
16290)	18
Table 6-1: Benefits of use of TRA	36
Table 7-1: Models types associated to TRLs	40
Table 7-2: Use of commonly-used models for TRL progression	42
Table 7-3: Links between TRL and Heritage Category	45
Table 7-4: Technology maturity transfer for re-use	46
Table A.1. Link between Software development status and TPI	50

Table A-1 : Link between Software development status and TRL	50
Table B-1 : Milestones and work achievement for EEE components TRL	57
Table C-1 : Use of TRL for with materials and manufacturing process development	60

European Foreword

This document (CEN/CLC/TR 17603-11:2021) has been prepared by Technical Committee CEN/CLC/JTC 5 "Space", the secretariat of which is held by DIN.

It is highlighted that this technical report does not contain any requirement but only collection of data or descriptions and guidelines about how to organize and perform the work in support of EN 16603-11.

This Technical report (CEN/CLC/TR 17603-11:2021) originates from ECSS-E-HB-11A.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN [and/or CENELEC] shall not be held responsible for identifying any or all such patent rights.

This document has been prepared under a mandate given to CEN by the European Commission and the European Free Trade Association.

This document has been developed to cover specifically space systems and has therefore precedence over any TR covering the same scope but with a wider domain of applicability (e.g.: aerospace).

Introduction

This Handbook supports the application of the TRL, and provides guidelines to its use in projects and its independent verification within each specific project context.

This Handbook provides guidelines for best practice for interpretation of the requirements contained in ECSS-E-AS-11 and for the implementation of the process of technology readiness assessment for technologies applied to a critical function of an element.

The ECSS-E-AS-11 - "Adoption Notice of ISO 16290 Definition of the Technology Readiness Levels (TRLs) and their criteria of assessment" adopts ISO 16290 with a minimum set of modifications, to allow for reference and for a consistent integration in ECSS system of standards.

TRL is a scale for technology maturity assessment and not a method of technology engineering nor development. TRL is used in R&T&D activities and also in project activities.

For project activities, a technology readiness assessment informs the project manager (until the end of B phase) of the risk when adopting a new technology for a critical function of an element of the system. In the C and D phases TRL is no longer used by the project and the maturity of technology is managed in the critical item list.

For other projects the information of the declared technology maturity can be reused and an assessment of the new project use conditions are considered in the assessment.

In this handbook the three main actors and the respective role of each actor are clearly identified. The three discrete actors are: technology developers, projects teams (using the technology) and the TRA participants (i.e. those who perform the technology readiness assessment).

1 Scope

The present handbook is provided to support the implementation of the requirements of ECSS-E-AS-11 to space projects.

With this purpose, this handbook provides guidelines on the way to assess the maturity of a technology of a product in a given environment, to use the TRL assessment outcome in the product development framework, and to introduce some further refinements for specific disciplines or products to which the TRL assessment methodology can be extended.

The concept of Manufacturing Readiness Level (MRL) is not addressed in this document, whilst the concept of TRL can be applied to the technology-related aspects of manufacturing.

2 References

The following documents are referenced in this text or provide additional information useful for the reader.

EN Reference	Reference in text	Title
EN 16601-00-01	ECSS-S-ST-00-01	ECSS system – Glossary of terms
EN 16603-10	ECSS-E-ST-10	Space engineering – System engineering general requirements
EN 16603-10-02	ECSS-E-ST-10-02	Space engineering – Verification
EN 16603-10-03	ECSS-E-ST-10-03	Space engineering – Testing
EN 16603-10-06	ECSS-E-ST-10-06	Space engineering – Technical requirements specification
EN 16603-10-24	ECSS-E-ST-10-24	Space engineering – Interface management
EN 16603-11	ECSS-E-AS-11	Adoption notice of ISO 16290, Space systems – Definition of the Technology Readiness Levels (TRLs) and their criteria of assessment (1 October 2014)
TR 17603-10-02	ECSS-E-HB-10-02	Space engineering – Verification guidelines
EN 16603-40	ECSS-E-ST-40	Space engineering – Software
EN 16603-70	ECSS-E-ST-70	Space engineering – Ground systems and operations
EN 16601-10-10	ECSS-M-ST-10-01	Space project management – Organization and conduct of reviews
EN 16601-60	ECSS-M-ST-60	Space project management – Cost and schedule management
EN 16601-80	ECSS-M-ST-80	Space project management – Risk management
EN 16602-10	ECSS-Q-ST-10	Space product assurance – Product assurance management
EN 16602-10-04	ECSS-Q-ST-10-04	Space product assurance – Critical-item control
EN 16602-20	ECSS-Q-ST-20	Space product assurance – Quality assurance
EN 16602-20-10	ECSS-Q-ST-20-10	Space product assurance – Off-the-shelf items utilization in space systems
EN 16602-30	ECSS-Q-ST-30	Space product assurance – Dependability
EN 16602-40	ECSS-Q-ST-40	Space product assurance - Safety
EN 16602-60	ECSS-Q-ST-60	Space product assurance – Electrical, electronic and electromechanical (EEE) components

EN Reference	Reference in text	Title
EN 16602-60-13	ECSS-Q-ST-60-13	Space product assurance – Commercial electrical, electronic and electromechanical (EEE) components
EN 16602-70	ECSS-Q-ST-70	Space product assurance – Materials, mechanical parts and processes
EN 16602-70-71	ECSS-Q-ST-70-71	Spaced product assurance – Materials, processes and their data selection
EN 16602-80	ECSS-Q-ST-80	Space product assurance – Software product assurance
	ISO 16290:2013	Space systems - Definition of the Technology Readiness Levels (TRLs) and their criteria of assessment
	Mankins 95 reference (M95r)	TECHNOLOGY READINESS LEVELS, A White Paper, April 6, 1995, John C. Mankins Advanced Concepts Office, Office of Space Access and Technology NASA 1 https://www.hq.nasa.gov/office/codeq/trl/trl.pdf

koniec náhľadu – text ďalej pokračuje v platenej verzii STN