TNI	Kozmická technika Multipakčná príručka	TNI CEN/CLC/TR 17603-20-01
		31 0540

Space engineering - Multipactor handbook

Táto technická normalizačná informácia obsahuje anglickú verziu CEN/CLC/TR 17603-20-01:2021. This Technical standard information includes the English version of CEN/CLC/TR 17603-20-01:2021.

Táto technická normalizačná informácia bola oznámená vo Vestníku ÚNMS SR č. 12/21

134162

Úrad pre normalizáciu, metrológiu a skúšobníctvo Slovenskej republiky, 2022 Slovenská technická norma a technická normalizačná informácia je chránená zákonom č. 60/2018 Z. z. o technickej normalizácii.

CEN/CLC/TR 17603-20-

TECHNICAL REPORT RAPPORT TECHNIQUE TECHNISCHER BERICHT

September 2021

ICS 49.140

English version

01

Space engineering - Multipactor handbook

Ingénierie spatiale - Manuel sur l'effet Multipactor

Raumfahrttechnik - Multipactorhandbuch

This Technical Report was approved by CEN on 13 September 2021. It has been drawn up by the Technical Committee CEN/CLC/JTC 5.

CEN and CENELEC members are the national standards bodies and national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom.

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels

© 2021 CEN/CENELEC All rights of exploitation in any form and by any means reserved worldwide for CEN national Members and for **CENELEC** Members.

TNI CEN/CLC/TR 17603-20-01: 2022

CEN/CLC/TR 17603-20-01:2021 (E)

Table of contents

Europ	ean Fo	reword	9
Introd	uction.		10
1 Scop	oe		11
2 Refe	rences		12
3 Tern	ns, defi	nitions and abbreviated terms	14
3.1		from other documents	
3.2	Abbrev	<i>v</i> iated terms	15
4 Verif	ication	1	16
4.1	Verifica	ation process	16
4.2	Multipa	actor verification plan	16
	4.2.1	Generation and updating	16
	4.2.2	Description	16
4.3	Power	requirements	16
	4.3.1	General power requirements	16
4.4	Classif	fication of equipment or component type	17
	4.4.1	General classification of equipment or component type	17
4.5	Verifica	ation routes	20
4.6	Single	carrier	20
	4.6.1	General	20
	4.6.2	Verification by analysis	20
	4.6.3	Verification by test	20
4.7	Multica	arrier	22
	4.7.1	General	22
	4.7.2	Verification by analysis	22
	4.7.3	Verification by test	22
4.8	Bibliog	raphy for clause 4	23
5 Desi	gn ana	lysis	24
5.1	Overvi	ew	24
5.2	Field a	inalysis	24

5.3	Multipactor design analysis24		
	5.3.1	Frequency selection	24
	5.3.2	Design analysis levels	24
	5.3.3	Available data for Multipactor analysis	58
5.4	Bibliogr	raphy for clause 5	62
6 Multi	pactor	- Test conditions	64
6.1	Cleanli	ness	64
6.2	Pressu	re	65
6.3	Tempe	rature	66
6.4	Signal	characteristics	67
	6.4.1	Applicable bandwidth	67
	6.4.2	Single-frequency test case	67
	6.4.3	Multi-frequency test case	68
	6.4.4	Pulsed testing	73
6.5	Electro	n seeding	74
	6.5.1	General	74
	6.5.2	Multipactor test in CW operation	74
	6.5.3	Multipactor test in pulsed operation	74
	6.5.4	Multipactor test in multi-carrier operation	74
	6.5.5	Seeding sources	74
	6.5.6	Seeding verification	82
6.6	Bibliogr	raphy for clause 6	82
7 Multi	pactor	- Methods of detection	83
7.1	Genera	۱	83
7.2	Detecti	on methods	83
	7.2.1	Introduction	83
	7.2.2	Global detection methods	84
	7.2.3	Local detection methods	86
7.3	Detecti	on method parameters	87
	7.3.1	Verification	87
	7.3.2	Sensitivity	87
	7.3.3	Rise time	87
8 Multi	pactor	- test procedure	88
8.1	Genera	- 1	88
8.2	Test be	ed configuration	89
8.3	Test bed validation		

	8.3.1	Reference multipactor test	89
8.4	Test se	equence	93
	8.4.1	Power profile	93
8.5	Accept	tance criteria	93
	8.5.1	Definitions	93
	8.5.2	Multipactor Free Equipment or component	93
	8.5.3	Steps in case of Discharges or Events during test	93
	8.5.4	Investigation of Test Anomalies	93
8.6	Test p	rocedure	93
	8.6.1	Test procedure for high power loads	93
8.7	Test re	porting	97
8.8	Bibliog	raphy for clause 8	
9 Seco	ondarv	electron emission yield requirements	
9.1	-	al	
	9.1.1	SEY definition and properties	
	9.1.2	SEY and Multipactor	
	9.1.3	Factors affecting SEY	
	9.1.4	SEY testing	
9.2	SEY m	neasurements justification	
9.3	Worst	case SEY measurement	
9.4	SEY m	neasurements conditions	
	9.4.1	Environmental conditions	
	9.4.2	SEY test bed conditions	115
	9.4.3	SEY sample characteristics	118
9.5	SEY m	neasurements procedure	119
	9.5.1	SEY Measurements procedure documents	119
	9.5.2	SEY measurement calibration	119
9.6	ECSS	SEY data selection	120
9.7	Bibliog	raphy for clause 9	139

Figures

Figure 4-1:	Component assembly with consideration of reflection coefficient	16
Figure 4-2:	Isolator block diagram	17
Figure 4-3:	Tested component – Coaxial filter	18
Figure 4-4:	Multipactor simulations and multipactor measurements with and without thermal baking for a RF component with different dielectric materials	19
Figure 4-5:	Schematic diagram of discharge at a triple point in the inverted voltage gradient configuration with potential contours indicated by colour scale	20

Figure 4-6: Component assembly with consideration of the reflection coefficient of the downstream component assembly for test margin21	
Figure 4-7: Power correction with respect to mismatch of the payload downstream component assembly	
Figure 5-1: 2D schematic of a typical iris-like structure	5
Figure 5-2: 2D Typical Sombrin chart with fringing field effect for different d/l ratios27	,
Figure 5-3: 2D Typical multipactor chart computed with non-stationary theory with fringing field effect for different d/l ratios	3
Figure 5-4: 2D Experimental results corresponding to EVEREST project [5-12]29)
Figure 5-5: 2D Experimental results corresponding to ESA-TESAT activity [5-10]29)
Figure 5-6: 2D Experimental results corresponding to ESA-AURORASAT activity [5- 11])
Figure 5-7: 2D Numerical results corresponding to ESA-AURORASAT activity [5-11].30)
Figure 5-8: 2D Analytical results corresponding to ESA-AURORASAT activity [5-11]31	
Figure 5-9: Fringing field analysis method 1 for L1 analysis type)
Figure 5-10: Fringing field analysis method 2 for L1 analysis type	3
Figure 5-11: Single-carrier L1 analysis flow diagram	ŀ
Figure 5-12: Schematic network used for multipactor analysis	5
Figure 5-13: Example of multicarrier signal and corresponding pulse approximation37	,
Figure 5-14: Electron absorption rate for zero applied voltage	3
Figure 5-15: L1 analysis for multicarrier, Pulsed model flow chart)
Figure 5-16: 3D view of Ku-band transformer of ESA TRP activity [5-19]40)
Figure 5-17: Pulse amplitude and carrier amplitude vs ton41	
Figure 5-18: Example with 3 different "on intervals" corresponding to 10%, 30% and 70% of the envelope period together with the theoretical limit (boundary).42	<u>)</u>
Figure 5-19: 3D of Ku band bandpass filter of ESA TRP activity [5-19]43	;
Figure 5-20: Hybrid L1/L2 multi-carrier analysis steps45	;
Figure 5-21: Electron growth over 10 envelope periods for 10 different "on intervals" for one amplitude factor	
Figure 5-22: Convergence of the amplitude factor, showing also how Γ converges towards one electron47	,
Figure 5-23: Hatch and William chart with the multicarrier in-phase amplitude indicated by a green circle. The red dashed line is the fd-product of the average multicarrier frequency and the critical gap size48	3
Figure 5-24: KS3 sample geometry49)
Figure 5-25: KS3 sample simulated RF performance50)
Figure 5-26: 3D view of L-band sample51	
Figure 5-27: Predicted S-parameter Performance of Preliminary L-band RF Device Design)
Figure 5-28: Predicted Voltage Distribution in Preliminary L-band RF Device Design53	3

Figure 5-29: Predicted S-parameter Performance of Finalised L-band RF Device (152 MHz)	
Figure 5-30: Predicted Voltage Distribution in Finalised L-band RF Device (1525 MHz)	.54
Figure 5-31: Predicted S-parameter Performance of Finalised L-band RF Device (1405 MHz)	.54
Figure 5-32: Predicted Voltage Distribution in Finalised L-band RF Device (1405 MHz)	.55
Figure 5-33: Variation of peak voltage on each resonator with frequency – 30 MHz design bandwidth	.56
Figure 5-34: Variation of peak voltage on each resonator with frequency – 10 MHz design bandwidth	.56
Figure 5-35: Variation of peak voltage on central resonator with bandwidth change (F = 1525 MHz)	⁻ с .57
Figure 5-36: RF performances with machining tolerances (Resonant reference samp S-3 and S-4)	
Figure 5-37: Electric field (12,75 GHz – samples S-3 and S-4)	.59
Figure 5-38: Voltage inside critical gap (samples S-3 and S-4)	.59
Figure 5-39: Nominal model	.60
Figure 5-40: Re-tuned model	.61
Figure 5-41: Return Loss nominal (red) and tuned (pink)	.61
Figure 6-1: Work in a clean room environment.	.64
Figure 6-2: Screenshot of clean room monitoring. The pressure reading corresponds the overpressure delta in the clean room	
Figure 6-3: A pressure gauge	.65
Figure 6-4: Picture of a typical pressure profile for a P1 component or equipment	.65
Figure 6-5: Picture of a typical pressure profile for a P2/P3 component or equipment with pressure spikes related to outgassing	
Figure 6-6: RF cable with thermocouples.	.66
Figure 6-7: RF cable with thermocouples.	.67
Figure 6-8: A multicarrier test facility	.68
Figure 6-9: Schematic of a three-carrier multipactor test bed	.68
Figure 6-10: Error probability distributions for different <i>f</i> · <i>d</i>	.69
Figure 6-11: Error dependency on the similarity degree	.70
Figure 6-12: Margin definition with respect pulsed model and CW operation	.71
Figure 6-13: Typical pulse parameters during multipactor test	.73
Figure 6-14: Decay of Strontium-90	.75
Figure 6-15: Picture of an encapsulated radioactive source.	.75
Figure 6-16: Sketch of the photoelectric effect	.77
Figure 6-17: Picture of the UV lamp as part of a test bed	.77
Figure 6-18: Spectrum of the typical lamps used for electron seeding	.78

Figure 6-19: Diagram of an electron gun	.79
Figure 6-20: Sketch of the functioning of an electron gun	.79
Figure 6-21: Picture of an electron gun installed into a test bed	.80
Figure 7-1: Schematic of global detection systems implemented in a typical test bed.	.84
Figure 7-2: Electron probe circuit diagram	.86
Figure 8-1: Multipactor test procedure overview.	.89
Figure 8-2: Example of an L- and S-band reference sample	.90
Figure 8-3: Measured S-parameter performance of broadband multipactor sample	.91
Figure 8-4: Ku-band Broadband Multipactor Sample.	.91
Figure 8-5: Multipactor threshold variation vs. gap height	.92
Figure 8-6: Ku-band reference sample dimensions	.92
Figure 8-7: Heat pipe	.94
Figure 9-1: Typical dependence of SEY coefficients on primary electron energy?	101
Figure 9-2: Energy distribution curve of emitted electron from gold target surface submitted to 112 eV electron irradiation [9-1]	101
Figure 9-3: Experimental arrangement for SEY test with emission collector	103
Figure 9-4: SEY experimental setup (without collector around the sample)	105
Figure 9-5: Typical composition of exposed to air metal surface	107
Figure 9-6: Measured SEY of metals exposed to air without a specific surface cleaning procedure	
Figure 9-7: Schematic view of material exposed to atmosphere: the case of silver?	109
Figure 9-8: Effect of cleaning of the surface by heating on the SEY of Nb	110
Figure 9-9: Effect of the water absorption on the SEY.	110
Figure 9-10: Effect of baking on the SEY of dielectrics.	111
Figure 9-11: Evolution of the SEY of the technical silver versus pressure	112
Figure 9-12: Effect of the temperature on the SEY of silver. Figure extracted from [9- 18]	
Figure 9-13: Effect of the temperature on the SEY of MgO and BN-SiO2 ceramics?	114
Figure 9-14: Effect of the temperature on the SEY of coverglass and CVD diamond.	115
Figure 9-15: Effect of the incidence angle variations on the SEY of silver	116
Figure 9-16: Effect of electron irradiation on SEY (CERN)	116
Figure 9-17: Influence of the primary electron energy on the charging process. TEEY SEY, E_{C1} = E1 and E_{C2} =E2	
Figure 9-18: Influence of the primary electron energy on the charging process, EEY = SEY, E_{C1} = E1 and E_{C2} =E2	118
Figure 9-19: SEY as a function of the primary electron energy for aluminium	120
Figure 9-20: SEY as a function of the primary electron energy for copper	121
Figure 9-21: SEY as a function of the primary electron energy for gold	121
Figure 9-22: SEY as a function of the primary electron energy for silver coatings	122

Tables

Table 4-1:Multipactor simulations and multipactor thermal baking for a RF component w	measurements with and without ith different dielectric materials18
Table 5-1: Characteristics Ku-band transformer or	f ESA TRP activity [5-19]40
Table 5-2: Characteristics Ku-band transformer or	f ESA TRP activity [5-19]43
Table 5-3: Multicarrier signal characteristics	43
Table 5-4: Predicted and testes multipactor break	down levels44
Table 5-5: SEY characteristics of KS3 sample	50
Table 5-6: Multipactor thresholds for KS3 sample	51
Table 5-7: SEY data for L-band sample	57
Table 5-8: Multipactor thresholds for L-band sample	ole57
Table 5-9: Multipactor threshold vs. manufacturing	g errors (samples S-3 and S-4)60
Table 6-1: Error statistics in dB for silver and alun carriers, frequency band and fxd prod	ninium, and different values of uct69
Table 6-2: Rate and energy of injected electrons wall [6-4]	going through a particular aluminium 76
Table 8-1: Example of Multipactor Test Specificat	ion Sheet88
Table 8-2: Maximum RF power applied to the load	d range (margin in bold)95
Table 8-3: Multipactor test report summary	
Table 8-4: Test setup validation without sample	
Table 8-5: Test setup validation with reference sa	mple98
Table 8-6: Test of DUT at reduced power level at the vacuum chamber (RECOMMEND	ambient pressure just before closing ED99
Table 9-1: Average values of the main SEY parar "Before RF testing" in the below table (mentioned, "After RF testing" in the b measurement facility) and all the "as tested" SEY samples
Table 9-2: Requirement in the experimental cond	itions for SEY measurement119
Table 9-3: SEY parameters of the SEY curves of	Al, Cu, Au and Ag samples120
Table 9-4: SEY curve data for aluminium	
Table 9-5: SEY curve data for copper	
Table 9-6: SEY curve data for gold	
Table 9-7: SEY curve data for silver	

European Foreword

This document (CEN/CLC/TR 17603-20-01:2021) has been prepared by Technical Committee CEN/CLC/JTC 5 "Space", the secretariat of which is held by DIN.

It is highlighted that this technical report does not contain any requirement but only collection of data or descriptions and guidelines about how to organize and perform the work in support of EN 16603-20-01:2020.

This Technical report (CEN/CLC/TR 17603-20-01:2021) originates from ECSS-E-HB-20-01A.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN [and/or CENELEC] shall not be held responsible for identifying any or all such patent rights.

This document has been prepared under a mandate given to CEN by the European Commission and the European Free Trade Association.

This document has been developed to cover specifically space systems and has therefore precedence over any TR covering the same scope but with a wider domain of applicability (e.g.: aerospace).

Introduction

Multipactor is a well-understood RF breakdown mechanism in high vacuum conditions. It has been investigated both theoretically and experimentally over many years, as listed in references from [2-1] to [2-7]. Essential ingredient for multipactor is initial free electrons, also called primary electrons. Free electrons can be accelerated under the action of the high power electromagnetic signals inside the RF component. These accelerated electrons impact the RF internal surface with such a kinetic energy to knock out secondary electrons. This resonant process repeats until an avalanche-like growth of electrons is reached, and a multipactor discharge occurs. A multipactor discharge produces signal noise, power reflection and ultimately a local ionization that leads to a complete short circuit. In the worst case, this can develop to a complete system failure.

A typical multipactor event can be described as follows:

- 1. Free electrons exist within the RF field region of a component whose dimensions are small compared with the electron mean free path as a result of low pressure within the component.
- 2. The electric field within the component accelerates the free electrons towards a surface.
- 3. The electrons impact on the surface with appropriate energies to liberate more secondary electrons than the incident ones.
- 4. Under the specific condition of synchronism of the RF electric field and the electron impact time, resonance conditions are met and steps b. and c. repeat until multipactor discharge occurrence.

Beside the multipactor discharge, other electrical breakdown of different nature in RF components such as multipactor leading to corona due to local outgassing and discharge occurrence in intermediate pressure range can also arise [2-8], [2-9] and [2-10].

NOTE The Multipactor Handbook follows the same structure as the Standard. Where the WG has decided that the content of a clause of the Standard needs no supporting material this clause is left empty. The text "*No supporting material needed.*" is added there.

1 Scope

This Handbook describes the guidelines and recommendations for the design and test of RF components and equipment to achieve acceptable performance with respect to multipactor-free operation in service in space. This document is the mirror document of the ECSS-ST-20-01 normative document. Thus it includes the same contents as the normative text and has the same structure.

This Handbook is intended to result in the effective design and verification of the multipactor performance of the equipment and consequently in a high confidence in achieving successful product operation.

This Handbook covers multipactor events occurring in all classes of RF satellite components and equipment at all frequency bands of interest. Operation in single carrier CW and pulse modulated mode are included, as well as multi-carrier operations. A detailed chapter on secondary emission yield is also included.

This Handbook does not include breakdown processes caused by collisional processes, such as plasma formation.

2 References

EN Reference	Reference in text	Title
EN 16601-00-01	ECSS-S-ST-00-01	ECSS system – Glossary of terms
EN 16603-10-02	ECSS-E-ST-10-02	Space engineering – Verification
EN 16603-10-03	ECSS-E-ST-10-03	Space engineering - Testing
EN 16603-20-01	ECSS-E-ST-20-01	Space engineering – Multipactor design and test
EN 16601-10	ECSS-M-ST-10	Space project management – Project planning and implementation
EN 16601-40	ECSS-M-ST-40	Space project management – Configuration and information management
EN 16602-20-08	ECSS-Q-ST-20-08	Space product assurance – Storage, handling and transportation of spacecraft hardware
EN 16602-70-01	ECSS-Q-ST-70-01	Space product assurance – Cleanliness and contamination control
EN 16602-70-02	ECSS-Q-ST-70-02	Space product assurance – Thermal vacuum outgassing test for the screening of space materials
	ESCC-20600	Preservation, packaging and despatch of ESCC component
	ISO 14644–1:2015	Clean rooms and associated controlled environments – Part 1: Classification of air cleanliness by particle concentration

- [2-1] A. Woode & J. Petit, Diagnostic Investigations into the Multipactor Effect, Susceptibility Zone Measurements and Parameters Affecting A Discharge, ESTEC Working Paper 1556, November 1989
- [2-2] Abstract Book, Workshop on Multipactor and Passive Intermodulation Products Problems in Spacecraft Antennas, ESTEC, December 1990
- [2-3] Final Presentations & Working Meeting: Multipactor & PIM in Space RF Hardware, ESTEC, January 1993
- [2-4] A. J. Marrison, R. May, J.D. Sanders, A. D. Dyne, A. D. Rawlins, J. Petit, A study of Multipactor in Multicarrier RF Components, Report no AEA/ TYKB/31761/01/RP/05 Issue 1, January 1997
- [2-5] A. J. Hatch and H.B. Williams, J. Appl. Phys. 25, 417 (1954)
- [2-6] A. J. Hatch and H.B. Williams, Phys. Rev. 112, 681 (1958)
- [2-7] R. Woo, Multipacting Discharges between Coaxial Electrodes, J. Appl. Phys. 39, 1528-1533 (1968)
- [2-8] R. Woo, Final Report on RF Voltage Breakdown in Coaxial Transmission Lines, JPL Technical Report 32-1500, October 1970

- [2-9] F. Höhn, W. Jacob, R. Beckmann, R. Wilhelm, The Transition of a Multipactor to a low-pressure gas discharge, Phys. Plasma, 4, 940-944 (1997)
- [2-10] J. M. Meek and J. D. Craggs, Electrical Breakdown of Gases, Wiley (1978)

koniec náhľadu – text ďalej pokračuje v platenej verzii STN