TNI	Kozmická technika Príručka pre techniku vysokého napätia a navrhovanie	TNI CEN/CLC/TR 17603-20-05
		31 0540

Space engineering - High voltage engineering and design handbook

Táto technická normalizačná informácia obsahuje anglickú verziu CEN/CLC/TR 17603-20-05:2021. This Technical standard information includes the English version of CEN/CLC/TR 17603-20-05:2021.

Táto technická normalizačná informácia bola oznámená vo Vestníku ÚNMS SR č. 12/21

134164

Úrad pre normalizáciu, metrológiu a skúšobníctvo Slovenskej republiky, 2022 Slovenská technická norma a technická normalizačná informácia je chránená zákonom č. 60/2018 Z. z. o technickej normalizácii.

CEN/CLC/TR 17603-20-

TECHNICAL REPORT RAPPORT TECHNIQUE TECHNISCHER BERICHT

August 2021

ICS 49.140

English version

05

Space engineering - High voltage engineering and design handbook

Ingénierie spatiale - Manuel d'ingénierie et de conception haute tension

Raumfahrttechnik - Handbuch für Hochspannungstechnik und Design

This Technical Report was approved by CEN on 14 June 2021. It has been drawn up by the Technical Committee CEN/CLC/JTC 5.

CEN and CENELEC members are the national standards bodies and national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom.

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels

© 2021 CEN/CENELEC All rights of exploitation in any form and by any means reserved worldwide for CEN national Members and for **CENELEC** Members.

TNI CEN/CLC/TR 17603-20-05: 2022

CEN/CLC/TR 17603-20-05:2021 (E)

Table of contents

Europ	ean For	reword	
Introd	uction		11
1 Scop	De		12
2 Refe	rences		13
3 Tern	ns, defii	nitions and abbreviated terms	
3.1	Terms	from other documents	17
3.2	Terms	specific to the present document	17
3.3	Abbrev	viated terms	21
4 High	voltag	e design considerations	23
4.1	Enviror	nment	23
	4.1.1	Impact of environment	23
	4.1.2	Pressure	23
	4.1.3	Temperature	25
	4.1.4	Energetic Particle Radiation	26
	4.1.5	Space Debris and Micrometeoroids	27
	4.1.6	Plasma	27
	4.1.7	Mechanical	
4.2	Electric	cal insulation	28
	4.2.1	Categories of insulation	28
	4.2.2	Gaseous insulation	28
	4.2.3	Liquid insulation	31
	4.2.4	Solid insulation	32
	4.2.5	Vacuum insulation	35
	4.2.6	Composites	36
4.3	Life lim	iting factors	36
	4.3.1	Perspective	36
	4.3.2	Electrical breakdown	37
	4.3.3	Partial discharges	43
	4.3.4	Paschen breakdown	46

	4.3.5	Ageing	48
4.4	Typical	applications	54
	4.4.1	DC-DC High voltage power conditioners	54
	4.4.2	Electronic power conditioners for TWTA	56
	4.4.3	Electric propulsion	63
	4.4.4	Microwave tubes	70
	4.4.5	Scientific instruments and experiments	73
5 High	voltage	e design principles	. 75
5.1	Basic d	esign principles	75
	5.1.1	Control of voltage	75
	5.1.2	Control of electrical field strengths	76
	5.1.3	Control of electrical field distribution	87
	5.1.4	Control of insulation properties	89
	5.1.5	Control of surface properties	92
	5.1.6	Control of partial discharges	93
	5.1.7	Control of corona effects	95
	5.1.8	Control of Paschen breakdown	95
	5.1.9	Control of triple junction effects	98
	5.1.10	Control of creepage path	99
	5.1.11	Control of surface charging	100
	5.1.12	Control of interferences	102
5.2	High vo	Itage assemblies	105
	5.2.1	Solid insulation: potted modules	105
	5.2.2	Solid insulation: others	125
	5.2.3	Gaseous insulation	127
	5.2.4	Liquid insulation (Oil)	132
	5.2.5	Space vacuum insulation	133
5.3	High vo	Itage components	141
	5.3.1	Transformers and inductors	141
	5.3.2	Capacitors	144
	5.3.3	Resistors	147
	5.3.4	Semiconductors	149
	5.3.5	Wires and cables	149
	5.3.6	Connectors	154
	5.3.7	Interconnections	155
	5.3.8	Insulators and spacers	157
	5.3.9	Feedthroughs	158

5.3.10	Printed circuit boards	159
5.3.11	Other components	161
voltage	e testing	162
Non-De	estructive Testing	162
6.1.1	Insulation Resistance Test (INR)	162
6.1.2	Bulk Resistance Measurement (BRM)	163
6.1.3	Surface Resistance Measurement (SRM)	164
6.1.4	Polarisation and Depolarisation Current Measurement (PDC)	165
6.1.5	Dielectric Loss Factor Test (DLF)	166
6.1.6	Partial Discharge Test (PDT)	167
6.1.7	Dielectric Withstanding Voltage Test (DWV)	173
6.1.8	Triple Junction Test (TRJ)	175
6.1.9	Critical pressure testing/Corona testing (CPT)	177
6.1.10	Life testing (LIT)	180
6.1.11	Accelerated life testing (ALT)	181
6.1.12	Burn-in testing (BIT)	182
Destruc	ctive Testing	183
6.2.1	Breakdown Voltage Test (BVT)	183
6.2.2	Lifetime evaluation testing (LET)	184
Supple	mentary Methods	185
Testing	strategy	186
voltage	e product aspects	189
7.1.1	Best practice for materials and processes selection	189
7.1.2	Best practice for design	191
7.1.3	Best practice for qualification	193
7.1.4	Best practice for flight acceptance	194
7.1.5	Best practice for verification	195
7.1.6	PID	196
7.1.7	Evaluation Plan	197
cific pro	blem areas	198
8.1.1	High voltage converters	198
8.1.2	Electric propulsion	200
8.1.3	Electron devices (tubes)	205
8.1.4	Scientific instruments and experiments	205
8.1.5	EMC aspects	205
ards and	d safety	207
	5.3.11 voltage Non-De 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.1.6 6.1.7 6.1.8 6.1.9 6.1.10 6.1.10 6.1.11 6.1.12 Destrue 6.2.1 6.2.2 Supple Testing voltage 7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 7.1.7 voltage 8.1.1 8.1.2 8.1.1 8.1.2 8.1.3 8.1.4 8.1.5	5.3.11 Other components. Non-Destructive Testing

9.1	Hazaro	ls	207
9.2	Safety		207
Annex	A High	NVoltage Field Calculation Tables	208
A.1	Princip	les of field efficiency factors for spheres and cylindrical geo	metries208
A.2	Spheri	cal geometries	209
A.3	Cylind	rical geometries	210
Annex	B Bes	t Practice References	
B.1	High V	oltage Evaluation Plan	212
	B.1.1	Evaluation Activities	212
	B.1.2	Evaluation Plan	212
	B.1.3	Manufacturing of Evaluation Samples	213
	B.1.4	Test and Characterisation	213
	B.1.5	Evaluation Review	213
B.2	Materia	als Evaluation	214
B.3	PID –	Process Identification Document	218

Figures

Figure 4-1: Arc Caused by Particle Bridge	.27
Figure 4-2: Discharge (breakdown) development in a gas volume between two electrodes by electron avalanche process	.38
Figure 4-3: Electrical strengths of a liquid insulation (here: transformer oil in 2,5 mm gap) in relation to voltage exposure time and assumed breakdown mechanism	.40
Figure 4-4: Vacuum breakdown phenomena	.42
Figure 4-5: Typical partial discharge configurations	.44
Figure 4-6: Electrical model of partial discharges for a gas-bubble in a solid	.45
Figure 4-7: Breakdown voltage of gases vs. the product of pressure times gap spacing	.47
Figure 4-8: Electrical treeing caused by partial discharges	.50
Figure 4-9: Example: Fatigue (thermo-mechanical stress-related) failures in assemble expressed as stress (ΔT – temperature cycle amplitude) over number or thermal cycles	f
Figure 4-10: Example: Fatigue (thermo-mechanical stress-related) failures in assemblies expressed as stress (ΔT – temperature cycle amplitude) over number of thermal cycles	
Figure 4-11: Electrical field strengths over time curve according to the Crine model	.54
Figure 4-12: DC/DC power conversion chains for high voltage of an EPC	.55
Figure 4-13: Topologies of electronic power conditioners	.56
Figure 4-14: Functional block diagram of an EPC	.57

Figure 4-15: Example for a high voltage generation of an EPC	.59
Figure 4-16: Example of a high voltage transformer for an EPC	.60
Figure 4-17: Example of a FEM calculation result: Equipotential Lines for a Plane-to- Plane configuration with spherical edges of the upper plane	
Figure 4-18: Principle of Electrical Propulsion vs. Chemical Propulsion	.63
Figure 4-19: FEEP Ion Emitter Principle	.65
Figure 4-20: FEEP Ion Emitter Load – Equivalent Circuit	.65
Figure 4-21: Hall Effect Thruster Principle	.66
Figure 4-22: HEMP Thruster Principle	.67
Figure 4-23: Ion Thruster Principle (Kaufmann)	.68
Figure 4-24: Radio Frequency Ion Thruster (RIT) Principle	.70
Figure 4-25: Schematic layout of a TWT	.71
Figure 4-26: Principle of the electron gun of a TWT	.72
Figure 4-27: Principle of the collector stage of a TWT	.72
Figure 5-1: Electrical field strength depending on voltage and geometrical parameter (Examples)	
Figure 5-2: Uniform electrical field for indefinite parallel planes	.79
Figure 5-3: Sphere-inside-sphere electrical field	.80
Figure 5-4: Examples for practical use of field equations for spheres	.81
Figure 5-5: Examples for practical: connections of wires by using spherical solder joints	82
Figure 5-6: Cylinder-inside-cylinder electrical field	.82
Figure 5-7: Space charge formation on an isolating surface	.84
Figure 5-8: Space charge formation on sharp-edged structures in various environments	85
Figure 5-9: Surface charging of an isolator	.85
Figure 5-10: Correct meshing of shapes	.87
Figure 5-11: General: E-Field and voltage for a three-dimensional path	.87
Figure 5-12: E-Field and voltage for gap lengths (straight path)	.88
Figure 5-13: Control of electrical field distribution - Examples	.89
Figure 5-14: Avoiding fibre bridging effect in liquid insulation	.90
Figure 5-15: Optimum design of interfaces between materials w.r.t. the electrical field	d92
Figure 5-16: Limit critical Paschen breakdown pressure range by limitation of maximizary gap	
Figure 5-17: Paschen discharge in a gap between solid insulation and ground	.97
Figure 5-18: Triggered Paschen discharge in a gap between solid insulation and ground	97
Figure 5-19: Critical triple-junction point/area in an interface between solid - gaseous/liquid/vacuum insulation - metal conductor	.98
Figure 5-20: Methods to reduce the influence of the triple junction zone by design	.99

Figure 5-21:	Impact of creepage path on electrical field distribution
Figure 5-22:	Designs to reduce impact of creepage path on electric insulation100
Figure 5-23:	Designs to reduce impact of surface charging on electric insulation101
Figure 5-24:	Segmenting of insulator to influence surface charging102
Figure 5-25:	Implementation of design measures minimizing interference problems for a typical high voltage power conditioner (regulated DC-DC converter for high voltage as an example)
Figure 5-26:	Designs example: potting of embedded aluminium structure, i.e. an HV terminal110
Figure 5-27:	Designs example: potting of embedded aluminium structure, i.e. HV terminal
Figure 5-28:	Shielding necessary to avoid exposure of an electronic part to excessive electrical field stress
Figure 5-29:	Potting of PCB's: typical design aspects115
Figure 5-30:	Transformer with rectifier and filter designed as two separate modules using open terminals for interconnecting HV harness
Figure 5-31:	Transformer and rectifier filter designed as two separate modules using potted terminals for interconnecting HV harness
Figure 5-32:	Transformer and rectifier filter designed as one combined module potted in (a) one or (b) two and more sequential potting processes
Figure 5-33:	Designs example: Spherical solder ball119
Figure 5-34:	Fitting a potted assembly to partial discharge testing (Example of a potted transformer winding)
Figure 5-35:	Examples for thermal drains embedded in potted modules123
Figure 5-36:	Relative Dielectric Strength of a SF ₆ -N ₂ -Mixture versus Composition of the Mixture
Figure 5-37:	Surface flashover process in a vacuum environment134
Figure 5-38:	Surface shapes for insulators136
Figure 5-39:	Arrangement of cylindrically layers of windings141
Figure 5-40:	Arrangement of windings in discs of a bobbin143
Figure 5-41:	Partial discharge test aspects of a high voltage transformer144
Figure 5-42:	Critical electrical field stress in the surrounding of high voltage capacitors and proposed measures
Figure 5-43:	Basic high voltage resistor design variants
Figure 5-44:	High voltage resistor design aspects148
Figure 5-45:	Suitable partial discharge test setup for high voltage wires150
	Critical stress cases for high voltage wires151
Figure 5-47:	Critical stress cases for high voltage wires terminations
Figure 5-48:	Interconnection of high voltage harness via soldering or crimping/bolting at terminals
Figure 5-49:	Flying lead interconnections

Figure 5-50: Suitable insulator design variants
Figure 5-51: Suitable feedthrough design variants159
Figure 6-1: Guard ring test set-up for bulk resistance measurement163
Figure 6-2: Partial discharge test set-up
Figure 6-3: Typical partial discharge test flow170
Figure 6-4: Partial discharge testing aspects. Example: High voltage transformer171
Figure 6-5: Dielectric Withstand Voltage Test Electrical Schematic
Figure 6-6: Triple Junction Test Electrical Schematic
Figure 6-7: Critical Pressure Test Electrical Schematic
Figure 6-8: Breakdown Voltage Test Electrical Schematic
Figure 8-1: High voltage conditioner with grounding at converter – load floating199
Figure 8-2: High voltage conditioner with grounding at load side – including a clamping device at the conditioner
Figure 8-3: High voltage conditioner with grounding at load side – including a clamping device at the conditioner and triax HV cable for load connection200
Figure A-1 : Field efficiency factors (Schwaiger factors) η as a function of geometry parameter <i>p</i> for spheres
Figure A-2 : Field efficiency factors (Schwaiger factors) η as a function of geometry parameter <i>p</i> for cylinders211
Figure A-3 : Field efficiency factors (Schwaiger factors) η as a function of geometry parameter <i>p</i> for cylinders
Figure B-1 : Typical material evaluation flow
Figure B-2 : Potted Rogowsky-profile electrodes
Figure B-3 : Crossed wire electrode
Figure B-4 : Material disk between electrodes

Tables

Table 4-1: Course Classification of the potential impact to electrical insulations by	
environmental type	23
Table 4-2: Properties of gaseous insulations	30
Table 4-3: Properties of liquid insulations	31
Table 4-4: Properties of EP, PUR and SI	33
Table 4-5: Properties of various polymers	34
Table 4-6: Properties of porcelain and alumina	35
Table 4-7: Paschen Minimum for various gases	48
Table 4-8: Overview on Electrical Propulsion Principles, Thruster Type and Electrica Physical Parameters	
Table 5-1: Critical "thresholds" for high voltage	75
Table 5-2: Orientation "map" for maximum electrical field strengths in electrical insulation	77

Table 5-3: Orientation values (examples) for selection sphere structures to limit the maximum electrical field of a high voltage assembly
Table 5-4: Dew point of SF ₆ -N ₂ -mixtures versus pressure and depending of composition130
Table 5-5: Surface shapes for insulators in combination with selected materialscomparing the relative surface flashover strengths of +/- 45 degree coneinsulators for various voltage waveforms w.r.t pure cylindrical shapes137
Table 5-6: Theoretical predictions and experimental consequences of methods to improve the surface flashover strengths in vacuum
Table 5-7: Application matrix for PCB with high voltage
Table 6-1: Test methods, levels and acceptance criteria for partial discharge testing 172
Table 6-2: Assessment of test methods w.r.t. its application
Table 7-1: Typical material properties and reference test methods for high voltage insulation materials 189
Table 7-2: Best practice of verification for high voltage design aspects 196
Table A-1 : Sphere geometries
Table A-2 : Cylinder-parallel-to-a-cylinder geometries 210
Table A-3 : Cylinder-inside-a-cylinder geometries 210
Table B-1 : Product categories according to heritage (Ref.: ECSS-E-ST-10-02)214

European Foreword

This document (CEN/CLC//TR 17603-20-05:2021) has been prepared by Technical Committee CEN/CLC/JTC 5 "Space", the secretariat of which is held by DIN.

It is highlighted that this technical report does not contain any requirement but only collection of data or descriptions and guidelines about how to organize and perform the work in support of EN 16603-20.

This Technical report (TR 17603-20-05:2021) originates from ECSS-E-HB-20-05A.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN [and/or CENELEC] shall not be held responsible for identifying any or all such patent rights.

This document has been prepared under a mandate given to CEN by the European Commission and the European Free Trade Association.

This document has been developed to cover specifically space systems and has therefore precedence over any TR covering the same scope but with a wider domain of applicability (e.g.: aerospace).

Introduction

The subject of high voltage engineering and design has been part of the spacecraft design process since the early times of spaceflight.

This was due to need for high voltage power conditioners being a key element of communication links. The relate expertise was built up in Europe in the decade of the 1980 with the support of the development of modern Electronic Power Conditioners (EPC's), to operate Travelling Wave Tube Amplifiers for telecommunication satellites and for high power radar applications.

In 1989 ESA launched its first high power radar for earth observation onboard the ERS-1 (European Remote Sensing Satellite), achieving a technology for 15 kV - 17 kV in space.

Today typically between some ten and over hundred EPC's with operating voltages of 5 kV - 8 kV are placed on many of the telecommunications satellites.

Several space borne radars with travelling wave tubes and klystrons are in orbit using voltage up to 20 kV. Various detectors for various kind of space environment with voltage between a few hundred volts and up to 30 kV are used in many missions, high power lasers up to 150 kV were studied, and even some experiments onboard the International Space Station using fancy high voltage sources.

The latest trend is the increasing use of electric propulsion for satellites dealing with supply voltage in the range between a few hundred volts and above 10 kV. High voltage related anomalies have been observed only a few times, some in the early years of building up experience, some also later, especially when new developments were done with new teams inexperienced in the field.

A need was identified for a standard already in the early years of the space flight, the US air force and NASA presented a series design and test handbook in the 1970's and 1980's. In Europe, ESA started discussing a draft standard with industry: the PSS-02-303 draft 2 from 1992 "Requirements for High Voltage Transformer and Components used in Electronic Power Conditioners for ESA Space Systems" this became a quasi standard reference in many space projects, even if it was never formally released. The growing diversity of high voltage application gave finally the urgency to make a new approach for standardization. The discussion started in 2007 with ECSS who led to the conclusion, that a standard would not satisfy the immediate needs for projects, as it would be too wide to cover the diverse applications and also would not be suitable to transfer the "know-how" of high voltage engineering and design. Therefore it was decided to produce a handbook to give a broad scope of knowledge and recommendations for design and test of high voltage equipment and components.

This document aims to satisfy these needs and provides a detailed view of high voltage knowledge aspects as well as giving a guideline to identify suitable design rules.

Proper design of high voltage effects of these processes is part of the system engineering process as defined in ECSS-E-ST-20, where only a small subset of high voltage requirements is given.

For new projects involving high voltage equipment and design it is useful to provide this handbook as a reference to generate suitable requirements specific to the targeted high voltage application.

Chapter 7 of this document gives some "best practice" statements.

Only a smart answer can be given to the definition of the range of voltages which should be considered as high voltages: The ECSS-E-ST-20C states for the definition of a high voltage "AC or DC voltage at which partial discharges, corona, arcing or high electrical fields can occur". For space environment this can occur ". This in fact can already appear at 60 V – 80 V if a low pressure environment in an inert gas provides a critical pressure for "Paschen Breakdown". Under air (N₂/O₂ mixtures) this can occur for voltage of above 300 V.

1 Scope

This Handbook establishes guidelines to ensure a reliable design, manufacturing and testing of high voltage electronic equipment and covers:

- Design
- Manufacturing
- Verification/Testing

of equipment generating, carrying or consuming high voltage, like: high voltage power conditioner, high voltage distribution (cables and connectors).

This Handbook is dedicated to all parties involved at all levels in the realization of space segment hardware and its interface with high voltage for which ECSS-E-ST-20C is applicable.

This handbook sets out to:

- summarize most relevant aspects and data of high voltage insulation
- provide design guidelines for high voltage insulation
- provide design guidelines for high voltage electronic equipment
- give an overview of appropriate high voltage test methods
- establish a set of recommendations for generation design and verification rules and methods
- provide best practices

Applicability is mainly focused on power conditioning equipment but may be also applicable for all other high voltage electric and electronic power equipment used on space missions, except items of experimental nature.

2 References

EN Reference	Reference in text	Title
EN 16601-00-01	ECSS-S-ST-00-01	ECSS System – Glossary of terms
EN 16603-10-02	ECSS-E-ST-10-02	Space engineering - Verification
EN 16603-10-03	ECSS-E-ST-10-03	Space engineering - Testing
EN 16603-10-04	ECSS-E-ST-10-04	Space engineering - Space environment
EN 16603-20	ECSS-E-ST-20	Space engineering - Electrical and electronic
EN 16603-20-01	ECSS-E-ST-20-01	Space engineering - Multipactor design and test
EN 16603-20-06	ECSS-E-ST-20-06	Space engineering - Spacecraft charging
EN 16603-32	ECSS-E-ST-32	Space engineering - Structural general requirements
EN 16602-30-11	ECSS-Q-ST-30-11	Space product assurance - Derating – EEE components
EN 16602-70-10	ECSS-Q-ST-70-10	Space product assurance - Qualification of printed circuit boards
EN 16602-70-11	ECSS-Q-ST-70-11	Space product assurance - Procurement of printed circuit boards
EN 16602-70-71	ECSS-Q-ST-70-71	Space product assurance - Data for selection of space materials and processes
-	ESA SP-398 (May 1997)	Power supply and control unit (PCSU) for radio frequency ion thrusters (RIT)" ESA, Proc. 2nd European Spacecraft Propulsion, Noordwijk, The Netherlands, 27-29 May 1997 (ESA SP-398), pp 643-648.
-	ESA SP-555 (June 2004)	The Power Control Unit for the Propulsion Engine of GOCE Program, Tato, C.; Palencia, J.; De la Cruz, F., 4th International Spacecraft Propulsion Conference, 2-4 June 2004 Chia Laguna (Cagliari), Sardinia, Italy
-	ESA SP-569 (June 2004)	The T5 Ion Propulsion Assembly for Drag Compensation on GOCE, Proceedings of the Second International GOCE User Workshop
-	AIAA 2005-4224 (2005)	First Test Results of the 1 to 15 kW Coaxial HEMP 30250 Thurster, 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 10 - 13 July 2005, Tucson, Arizona
-	AIAA 2006-4476 (2006)	High Power HEMP-Thruster Module, Status and Results of a DLR and ESA Development Program, 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 9 - 12 July 2006, Sacramento, California

EN Reference	Reference in text	Title
-	AIAA 2006-4825 (2006)	Micro-Newton Electric Propulsion Subsystems for Ultra-Stable Platforms, 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 9 - 12 July 2006, Sacramento, California
-	AIAA 2006-5172 (2006)	Theoretical Study of the Breathing Mode in Hall Thrusters, 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 9 - 12 July 2006, Sacramento, California
-	AIAA 2007-5215 (2007)	Generic High Voltage Power Supply – Next Generation, 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 8 - 11 July 2007, Cincinnati, OH
-	AIAA 2007-5250 (2007)	RIT-µX - High Precision Micro Ion Propulsion System based on RF-Technology, 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 8 - 11 July 2007, Cincinnati, OH
-	AIAA 2008-4632 (2008)	A model for the active control of low frequency oscillations in Hall thrusters, 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 21 - 23 July 2008, Hartford, CT
-	ASTM-D-150 (2011)	Standard Test Methods for AC Loss :Characteristics and Permittivity (Dielectric Constant) of Solid Electrical Insulation
-	ASTM D-2214 (2002)	Standard Test Method for Estimating the Thermal Conductivity of Leather with the Cenco-Fitch Apparatus
-	ASTM-D-2240 (2010)	Standard Test Method for Rubber Property: Durometer Hardness
-	ASTM-D-638 (2010)	Standard Test Method for Tensile Properties: of Plastics
-	ASTM-D-695 (2010)	Standard Test Method for Compressive: Properties of Rigid Plastics
-	ASTM-D-794 (1993)	Practice for Determining Permanent Effect of Heat on Plastics
-	ASTM-E831 (2006)	Standard Test Method for Linear Thermal Expansion of Solid Materials by Thermomechanical Analysis
-	Cygan P and Loghari J R (October 1990)	Models for insulation aging under electrical and thermal multistress, IEEE Transactions on Electrical Insulation, Vol 25, pg. 923-934
-	ESCC 3001 (October 2002)	Capacitors, Fixed, Ceramic Dielectric: Types I and II, Generic Specification
-	ESCC 3006 (October 2002)	Capacitors, Fixed, Film, Dielectric: Generic Specification

EN Reference	Reference in text	Title
-	ESCC 3901 (October 2002)	Wires and Cable, Electrical, 600V: Low Frequency, Generic Specification
-	E. Bourguignon, T. Scalais, J. Thomas (June 2004)	High Power Processing Unit for Stationary Plasma Thruster, Journal: Proc. 4th International Spacecraft Propulsion Conference (ESA SP-555). 2-4 June, 2004, Chia Laguna (Cagliari), Sardinia, Italy. p.65.1 ff
-	F. Boer (2004)	BN100 filler technology, ARTHE Engineering Solutions S.R.L., 2004
-	GSFC-S-311-P-796C (April 2007)	Resistors, "Matched-Pair",Low TC, Precision, RadialLead (Caddock Type TK)
-	IEC 60216-1 ed5.0 (July 2007)	Electrical insulating materials - Properties of thermal endurance, Part 1: Ageing procedures and evaluation of test results
-	J. C. Halpin (1985)	AVIP Air Force thrust for reliability", Institute of Environmental Sciences, Annual Technical Meeting, 31st, Las Vegas, NV, April 30-May 2, 1985, Proceedings (A86-23001 09-38). Mount Prospect, IL, Institute of Environmental Sciences, 1985, p. 206-218
-	JP. Crine (October 2002)	Ageing and Polarization Phenomena in PE under High Electrical fields, IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 9, No. 5, pp. 697-703
-	J.L. Parpal, JP. Crine, C. Dan (April 1997)	Electrical Ageing of Extruded Dielectric Cables, IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 4, No. 2, pp. 197-209, 1997
-	L. Ceruti, M. Magnifico (May 2005)	Power Control Unit for µN Propulsion Subsystem, Proc. Seventh European Space Power Conference, Stresa, Italy, 9-13 May 2005, Proceeding ESA SP-589
-	MIL-PRF-19500P (October 2010)	Performance Specification: Semiconductor Devices, general specification for
-	MIL-R-39008C (August 1990)	Military Specification: Resistor, Fixed, Composition (Insulated), established reliability, general specification
-	NASA-STD-8739.4 (March 2011)	Crimping, interconnecting cables, harnesses, and wiring (Baseline w/ Change 6)
-	R.V. Latham (1996)	High Voltage Vacuum Insulation, Academic Press, London, San Diego, 1996, Section 8
-	T.W. Dakin (January1948)	Electrical Insulation Deterioration Treated as Chemical Rate Phenomenon, AIEE Transactions, Vol. 67, pp. 113- 122.
-	T.W. Dakin (1960)	Electrical Insulation Deterioration, Electrotechnology, Vol. 3, pp. 129-13.

EN Reference	Reference in text	Title
-	ESA contract 18697/04/NL/MV (July 2005)	Quick maintenance for high voltage equipment with the new not toxic boron nitride powder (BN100) superior thermal conductive and lightweight filler

koniec náhľadu – text ďalej pokračuje v platenej verzii STN