TNI	Kozmická technika Príručka pre tepelnotechnický návrh Časť 1: Vizuálne faktory	TNI CEN/CLC/TR 17603-31-01
		31 0540

Space Engineering - Thermal design handbook - Part 1: View factors

Táto technická normalizačná informácia obsahuje anglickú verziu CEN/CLC/TR 17603-31-01:2021. This Technical standard information includes the English version of CEN/CLC/TR 17603-31-01:2021.

Táto technická normalizačná informácia bola oznámená vo Vestníku ÚNMS SR č. 12/21

134165

Úrad pre normalizáciu, metrológiu a skúšobníctvo Slovenskej republiky, 2022 Slovenská technická norma a technická normalizačná informácia je chránená zákonom č. 60/2018 Z. z. o technickej normalizácii.

CEN/CLC/TR 17603-31-

TECHNICAL REPORT RAPPORT TECHNIQUE TECHNISCHER BERICHT

August 2021

01

ICS 49.140

English version

Space Engineering - Thermal design handbook - Part 1: View factors

Ingénierie spatiale - Manuel de conception thermique -Partie 1 : Facteurs de vue

Raumfahrttechnik - Handbuch für thermisches Design -Teil 1: Sichtfaktoren

This Technical Report was approved by CEN on 14 June 2021. It has been drawn up by the Technical Committee CEN/CLC/JTC 5.

CEN and CENELEC members are the national standards bodies and national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom.

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels

© 2021 CEN/CENELEC All rights of exploitation in any form and by any means reserved worldwide for CEN national Members and for **CENELEC** Members.

Ref. No. CEN/CLC/TR 17603-31-01:2021 E

TNI CEN/CLC/TR 17603-31-01: 2022

CEN/CLC/TR 17603-31-01:2021 (E)

Table of contents

Europ	ean For	eword	7
1 Sco	oe		8
2 Refe	rences		9
3 Tern	ns, defir	nitions and symbols	
3.1	Terms	and definitions	10
3.2	Symbo	ls	10
4 Diffu	ise surf	aces	12
4.1	Genera	al	12
4.2	Infinites	simal to finite surfaces	13
	4.2.1	Planar to planar	13
	4.2.2	Planar to spherical	19
	4.2.3	Cylindrical to spherical	20
	4.2.4	Conical to spherical	21
	4.2.5	Spherical to spherical	23
	4.2.6	Ellipsoidal to spherical	25
	4.2.7	Planar to conical	28
4.3	Finite to	o finite surface	31
	4.3.1	Planar to planar. Two-dimensional configurations	31
	4.3.2	Planar to planar. Three-dimensional configurations	35
	4.3.3	Planar to cylindrical. Two-dimensional configurations	46
	4.3.4	Planar to cylindrical. three-dimensional configurations	48
	4.3.5	Planar to conical	54
	4.3.6	Spherical to planar	56
	4.3.7	Cylindrical to cylindrical. two-dimensional configurations	62
	4.3.8	Cylindrical to cylindrical. axisymmetrical configurations	64
	4.3.9	Spherical to cylindrical	69
	4.3.10	Conical to conical	72
	4.3.11	Conical to spherical	72
	4.3.12	Spherical to spherical	77

4.4	Additior	nal sources of data	80
5 Spec	ular su	rfaces	103
5.1	Genera	ı	103
5.2	Two pla	anar specular surfaces	105
	5.2.1	Two-dimensional configurations	105
	5.2.2	Parallel, directly opposed rectangles of same width and length	109
	5.2.3	Rectangles of same width and length with one common edge	115
5.3	Planar	specular and planar diffuse surface	118
	5.3.1	Two dimensional cavities. Cylinders of quadrangular cross section	118
5.4	Non-pla	anar specular surfaces	123
	5.4.1	Concentric cylinder or concentric spheres	123
Bibliog	graphy.		125

Figures

Figure 4-1: Geometric notation for view factors between diffuse surface	13
Figure 4-2: Values of F_{12} as a function of x and y. From Hamilton & Morgan (1952) [15]	15
Figure 4-3: Values of F_{12} as a function of x and y. From Hamilton & Morgan (1952) [15]	17
Figure 4-4: F ₁₂ vs. <i>H</i> for different values of dH. Infinitesimal surface to very thin coaxial annulus with finite radius. Calculated by the compiler	18
Figure 4-5: Values of F_{12} vs. λ for different values of H . The analytical expression (case I) is only valid in the shadowed region. Calculated by the compiler	19
Figure 4-6: Values of F_{12} as a function of H and λ . Calculated by the compiler	20
Figure 4-7: Values of F_{12} as a function of H and λ , for $\delta = 10^{\circ}$. Calculated by the compiler.	21
Figure 4-8: Values of F_{12} as a function of H and λ , for δ = 30°. Calculated by the compiler.	22
Figure 4-9: Values of F_{12} as a function of H and λ , for $\delta = 50^{\circ}$. Calculated by the compiler.	22
Figure 4-10: Values of F_{12} as a function of H and λ , for $\delta = 80^{\circ}$. Calculated by the compiler.	23
Figure 4-11: <i>F</i> ₁₂ as a function of <i>H</i> in the case of an infinitesimal sphere viewing a finite sphere. Calculated by the compiler.	24
Figure 4-12: F_{12} as a function of angle λ for different values of the dimensionless distance <i>H</i> . Calculated by the compiler.	25
Figure 4-13: F_{12} as a function of λ and H , for $A = 0,5$. Calculated by the compiler	26
Figure 4-14: F_{12} as a function of λ and H , for $A = 1,5$. Calculated by the compiler	27
Figure 4-15: F_{12} as a function of λ and H , for $A = 2$. Calculated by the compiler	27
Figure 4-16: Values of F_{12} vs. <i>M</i> for different values of <i>L</i> . Configuration 1, β = 10°. Calculated by the compiler.	29

Figure 4-17: Values of F_{12} vs. <i>M</i> for different values of <i>L</i> . Configuration 1, $\beta = 20^{\circ}$. Calculated by the compiler.	.29
Figure 4-18: Values of F_{12} vs. <i>M</i> for different values of <i>L</i> . Configuration 2, $\beta = 10^{\circ}$. Calculated by the compiler.	.30
Figure 4-19: Values of F_{12} vs. <i>M</i> for different values of <i>L</i> . Configuration 2, $\beta = 20^{\circ}$. Calculated by the compiler.	.30
Figure 4-20: Values of F_{12} as a function of X and Y, for $Z = 0$. Calculated by the compiler.	.33
Figure 4-21: Values of F_{12} as a function of X and Y, for Z = 0,5. Calculated by the compiler.	.33
Figure 4-22: Values of F_{12} as a function of X and Y, for Z = 1. Calculated by the compiler.	.34
Figure 4-23: Values of F_{12} as a function of X and Y, for Z = 2. Calculated by the compiler.	.34
Figure 4-24: Values of F_{12} as a function of X and Y, for Z = 5. Calculated by the compiler.	.35
Figure 4-25: Values of F_{12} as a function of X and Y. Calculated by the compiler	.36
Figure 4-26: F_{12} as a function of <i>L</i> and <i>N</i> for $\Phi = 30^{\circ}$. Table from Feingold (1966) [11], figure from Hamilton & Morgan (1952) [15]	.39
Figure 4-27: F_{12} as a function of <i>L</i> and <i>N</i> for $\Phi = 60^{\circ}$. Table from Feingold (1966) [11], figure from Hamilton & Morgan (1952) [15]	.39
Figure 4-28: F_{12} as a function of <i>L</i> and <i>N</i> for $\Phi = 90^{\circ}$. Table from Feingold (1966) [11], figure from Hamilton & Morgan (1952) [15]	.40
Figure 4-29: F_{12} as a function of <i>L</i> and <i>N</i> for $\Phi = 120^{\circ}$. Table from Feingold (1966) [11], figure from Hamilton & Morgan (1952) [15]	.40
Figure 4-30: F_{12} as a function of <i>L</i> and <i>N</i> for $\Phi = 150^{\circ}$. Table from Feingold (1966) [11], figure from Hamilton & Morgan (1952) [15]	.41
Figure 4-31: Values of F_{12} as a function of <i>L</i> for different regular polygons. <i>n</i> is the number of sides of the polygon. From Feingold (1966) [11]	.43
Figure 4-32: View factors between different faces of a honeycomb cell as a function of the cell length, <i>L</i> . From Feingold (1966) [11].	.44
Figure 4-33: Values of F_{12} as a function of R_1 and R_2 in the case of two parallel coaxial discs. Calculated by the compiler.	.46
Figure 4-34: Values of F_{12} and F_{13} as a function of the parameter <i>K</i> . From Jakob (1957) [19].	.48
Figure 4-35: F_{12} as a function of T and R. Calculated by the compiler.	.49
Figure 4-36: F_{12} as a function of T and R. Calculated by the compiler.	.50
Figure 4-37: F_{12} as a function of T and R. Calculated by the compiler.	.50
Figure 4-38: F_{12} as a function of <i>Z</i> , for different values of the dimensionless radius <i>R</i> . Calculated by the compiler.	.52
Figure 4-39: F_{12} as a function of R_2 for different values of the sector central angel α . Calculated by the compiler.	.57
Figure 4-40: F_{12} as a function of Z for different values of R_2 . Calculated by the compiler	.58

Figure 4-41: <i>F</i> ₁₂ from a sphere to both sides of a coaxial intersecting disc, vs. <i>H</i> , for different values of <i>R</i> . Calculated by the compiler	9
Figure 4-42: F12 from a sphere to the upper side of a coaxial intersecting disc, vs. <i>H</i> (- $1 \le H \le 1$), for different values of <i>R</i> . Calculated by the compiler	;9
Figure 4-43: Values of F_{12} as a function of Z and R. Calculated by the compiler6	0
Figure 4-44: F12 as a function of <i>x</i> in the case of two infinitely long parallel cylinders of the same diameter. Calculated by the compiler6	64
Figure 4-45: Plot of <i>F</i> ₁₂ vs. L for different values of <i>R</i> . From Hamilton & Morgan (1952) [15]6	6
Figure 4-46: Plot of <i>F</i> ₂₂ , vs. <i>R</i> for different values of <i>L</i> . From Hamilton & Morgan (1952) [15]6	67
Figure 4-47: F_{12} as a function of R for different values of Z. Calculated by the compiler7	0
Figure 4-48: Values of F_{12} as a function of H and L_2 for $L_1 = 1$. Calculated by the compiler	'1
Figure 4-49: Values of F_{12} as a function of S and D, for δ = 15°. From Campbell & McConnell (1968) [4]7	'3
Figure 4-50: Values of F_{12} as a function of S and D, for δ = 30°. From Campbell & McConnell (1968) [4]7	'4
Figure 4-51: Values of F_{12} as a function of S and D, for δ = 45°. From Campbell & McConnell (1968) [4]7	'5
Figure 4-52: Values of F_{12} as a function of S and D, for δ = 60°. From Campbell & McConnell (1968) [4]7	'6
Figure 4-53: Values of <i>F</i> ₁₂ as a function of <i>S</i> and <i>R</i> . From Jones (1965) [21]7	'9
Figure 4-54: Values of <i>F</i> ₁₂ as a function of S and <i>θ</i> . From Campbell & McConnell (1968) [4]8	80
Figure 5-1: Values of F_{12} as a function of R and H . Calculated by the compiler	6
Figure 5-2: Values of F_{11}^{s}/ρ_{2}^{s} as a function of <i>R</i> and <i>H</i> . Calculated by the compiler	6
Figure 5-3: Values of F^{s}_{12} as a function of <i>R</i> for different values of ϕ . Calculated by the compiler	8
Figure 5-4: Values of F_{11}^{s}/ρ_{2}^{s} as a function of <i>R</i> for different values of ϕ . Calculated by the compiler	9
Figure 5-5: Values of F_{12}^s as a function of <i>R</i> and <i>X</i> for <i>Z</i> = 1. Calculated by the compiler	0
Figure 5-6: Values of F_{11}^{s}/ρ_{2}^{s} as a function of <i>R</i> and <i>X</i> for <i>Z</i> = 1. Calculated by the compiler	1
Figure 5-7: Values of F^{s}_{12} as a function of R and X for $Z = 5$. Calculated by the compiler	1
Figure 5-8: Values of F_{11}^{s}/ρ_{2}^{s} as a function of <i>R</i> and <i>X</i> for <i>Z</i> = 5. Calculated by the compiler	2
Figure 5-9: Values of F^{s}_{12} as a function of <i>R</i> and <i>X</i> for <i>Z</i> = 10. Calculated by the compiler	2
Figure 5-10: Values of F_{11}^{s}/ρ_{2}^{s} as a function of <i>R</i> and <i>X</i> for <i>Z</i> = 10. Calculated by the compiler	3

	a function of R and X for $Z = 15$. Calculated by the	113
	as a function of R and X for $Z = 15$. Calculated by the	114
	a function of R and X for Z = 20. Calculated by the	114
•	as a function of R and X for $Z = 20$. Calculated by the	115
0	aspect ratio, <i>L</i> , for different values of <i>R</i> . ϕ = 30°. compiler.	116
	vs. aspect ratio, <i>L</i> , for different values of <i>R</i> . ϕ = 30°. compiler.	117
	aspect ratio, <i>L</i> , for different values of <i>R</i> . ϕ = 45°. compiler.	117
	d F_{11}^{s}/ρ_2^{s} vs. aspect ratio, <i>L</i> , for the limiting values of ϕ . compiler.	118
	ϕ for different values of the specular reflectance, ρ^{s} .	120
	ϕ for different values of the specular reflectance, ρ^s . compiler.	121
•	ϕ for different values of the specular reflectance, ρ^{s} . compiler	121
0	. ϕ for different values of the specular reflectance, ρ^{s} . compiler	122
	ϕ for different values of the specular reflectance, ρ^{s} . compiler	122
•	ϕ for different values of the specular reflectance, ρ^{s} . compiler	123

European Foreword

This document (CEN/CLC/TR 17603-31-01:2021) has been prepared by Technical Committee CEN/CLC/JTC 5 "Space", the secretariat of which is held by DIN.

It is highlighted that this technical report does not contain any requirement but only collection of data or descriptions and guidelines about how to organize and perform the work in support of EN 16603-31.

This Technical report (TR 17603-31-01:2021) originates from ECSS-E-HB-31-01 Part 1A.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN [and/or CENELEC] shall not be held responsible for identifying any or all such patent rights.

This document has been prepared under a mandate given to CEN by the European Commission and the European Free Trade Association.

This document has been developed to cover specifically space systems and has therefore precedence over any TR covering the same scope but with a wider domain of applicability (e.g.: aerospace).

This document is currently submitted to the CEN CONSULTATION.

1 Scope

In this Part 1 of the spacecraft thermal control and design data handbooks, view factors of diffuse and specular thermal surfaces are discussed.

For diffuse surfaces, calculations are given for radiation emission and absorption between different configurations of planar, cylindrical, conical, spherical and ellipsoidal surfaces for finite and infinite surfaces.

For specular surfaces the affect of reflectance on calculations for view factors is included in the calculations. View factors for specular and diffuse surfaces are also included.

The Thermal design handbook is published in 16 Parts

TR 17603-31-01	Thermal design handbook – Part 1: View factors
TR 17603-31-02	Thermal design handbook – Part 2: Holes, Grooves and Cavities
TR 17603-31-03	Thermal design handbook – Part 3: Spacecraft Surface Temperature
TR 17603-31-04	Thermal design handbook – Part 4: Conductive Heat Transfer
TR 17603-31-05	Thermal design handbook – Part 5: Structural Materials: Metallic and Composite
TR 17603-31-06	Thermal design handbook – Part 6: Thermal Control Surfaces
TR 17603-31-07	Thermal design handbook – Part 7: Insulations
TR 17603-31-08	Thermal design handbook – Part 8: Heat Pipes
TR 17603-31-09	Thermal design handbook – Part 9: Radiators
TR 17603-31-10	Thermal design handbook – Part 10: Phase – Change Capacitors
TR 17603-31-11	Thermal design handbook – Part 11: Electrical Heating
TR 17603-31-12	Thermal design handbook – Part 12: Louvers
TR 17603-31-13	Thermal design handbook – Part 13: Fluid Loops
TR 17603-31-14	Thermal design handbook – Part 14: Cryogenic Cooling
TR 17603-31-15	Thermal design handbook – Part 15: Existing Satellites
TR 17603-31-16	Thermal design handbook – Part 16: Thermal Protection System

koniec náhľadu – text ďalej pokračuje v platenej verzii STN