	Kozmická technika Príručka pre tepelnotechnický návrh Čast' 3: Povrchová teplota kozmických lodí	TNI CEN/CLC/TR 17603-31-03

Space Engineering - Thermal design handbook - Part 3: Spacecraft Surface Temperature

Táto technická normalizačná informácia obsahuje anglickú verziu CEN/CLC/TR 17603-31-03:2021.
This Technical standard information includes the English version of CEN/CLC/TR 17603-31-03:2021.

Táto technická normalizačná informácia bola oznámená vo Vestníku ÚNMS SR č. 12/21

English version

Space Engineering - Thermal design handbook - Part 3:
 Spacecraft Surface Temperature

Ingénierie spatiale - Manuel de conception thermique Partie 3 : Température de surface des véhicules spatiaux

Raumfahrttechnik - Handbuch für thermisches Design Teil 3: von Oberflächen auf Raumfahrzeugen

This Technical Report was approved by CEN on 14 June 2021. It has been drawn up by the Technical Committee CEN/CLC/JTC 5.
CEN and CENELEC members are the national standards bodies and national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom.

CENELEC

CEN-CENELEC Management Centre:
Rue de la Science 23, B-1040 Brussels

CEN/CLC/TR 17603-31-03:2021 (E)

Table of contents

European Foreword 10
1 Scope 11
2 References 12
3 Terms, definitions and symbols 13
3.1 Terms and definitions 13
3.2 Symbols 13
4 Solar radiation 15
4.1 General 15
4.2 Infinitely conductive planar surfaces 19
4.2. 1 Flat plate emitting on one or both sides 19
4.3 Infinitely conductive spherical surfaces 21
4.3.1 Sphere 21
4.4 Infinitely conductive cylindrical surfaces. 22
4.4.1 Two-dimensional circular cylinder 22
4.4.2 Three-dimensional circular cylinder 23
4.5 Infinitely conductive conical surfaces 25
4.5.1 Semi-infinite circular cone 25
4.5.2 Finite circular cone with insulated base. (axial configuration) 27
4.5.3 Finite height circular cone 29
4.6 Infinitely conductive cylindrical-conical surfaces 31
4.6.1 Cone-cylinder-cone 31
4.7 Infinitely conductive prismatic surfaces 49
4.7.1 Prism with an n-sided regular polygonal section 49
4.8 Infinitely conductive pyramidal surfaces 60
4.8.1 Pyramid with an n-sided regular polygonal section 60
4.9 Infinitely conductive prismatic-pyramidal surfaces. 70
4.9.1.1 Pyramid-prism-pyramid with an n-sided regular polygonal 70
4.10 Thin-walled spherical bodies. Finite conductivity 80
4.10.1 Non-spinning sphere 80
4.10.2 Non-spinning sphere. Including internal radiation 82
4.11 Thin-walled cylindrical bodies. Finite conductivity 83
4.11.1 Non-spinning two-dimensional circular cylinder 83
4.11.2 Spinning two-dimensional circular cylinder 85
4.11.3 Circular cylinder. solar radiation parallel to axis of symmetry 89
4.11.4 Cylindrical surface of rectangular cross section. Solar radiation normal to face 90
4.12 Thin-walled conical bodies. Conductivity 95
4.12.1 Non-spinning cone 95
5 Planetary radiation 99
5.1 General 99
5.2 Infinitely conductive planar surfaces 104
5.2.1 Flat plate absorbing and emitting on one side 104
5.3 Infinitely conductive spherical surfaces 105
5.3.1 Sphere 105
5.3.2 Hemispherical surface absorbing and emitting on outer face 106
5.4 Infinitely conductive cylindrical surfaces 108
5.4.1 Circular cylinder with insulated bases 108
5.4.2 Finite height circular cylinder 109
5.5 Infinitely conductive conical surfaces 119
5.5.1 Circular cone with insulated base 119
5.5.2 Finite height circular cone 122
6 Albedo radiation 125
6.1 General 125
6.2 Infinitely conductive planar surfaces 130
6.2.1 Flat plate absorbing and emitting on one side 130
6.3 Infinitely conductive spherical surfaces 135
6.3.1 Sphere 135
6.4 Infinitely conductive cylindrical surfaces 139
6.4.1 Circular cylinder with insulated bases 139
Bibliography 144
Figures
Figure 4-1: The function $T_{R}\left(A_{E} / A_{l}\right)^{1 / 4}$ vs. the distance to the Sun. Calculated by the compiler 16
Figure 4-2: The function $T_{R}\left(A_{E} / A_{l}\right)^{1 / 4} \mathrm{vs}$. the optical characteristics of the surface. Shaded zone of a is enlarged in b. Calculated by the compiler 17

CEN/CLC/TR 17603-31-03:2021 (E)

Figure 4-3: Temperature T_{R} as a function of $\alpha_{\mathrm{s}} / \varepsilon$ and A_{I} / A_{E} for $\mathrm{d}=1 \mathrm{AU}$. Shaded zone
of a is enlarged in b. Calculated by the compiler. .. 18
Figure 4-4: Ration $\left(A_{I} / A_{E}\right)^{1 / 4}$ as a function of γ, in the case of a flat plate. Calculated by
the compile... 20
Figure 4-5: Ratio $\left(A_{/} / A_{E}\right)^{1 / 4}$ as a function of γ and H / R, in the case of a finite height
circular cylinder. Calculated by the compiler.. 24
Figure 4-6: Ratio $\left(A_{I} / A_{E}\right)^{1 / 4}$ as a function of δ, in the case of a semi-infinite circular cone.
Calculate...
Figure 4-7: Ratio $\left(A_{/} / A_{E}\right)^{1 / 4}$ as a function of δ, in the case of a finite circular cone with
insulated base (axial configuration). Calculated by the compiler........................ 28
Figure 4-8: Ratio $\left(A_{I} / A_{E}\right)^{1 / 4}$ as a function of γ and δ, in the case of a finite height cone.
Calculated by the compile... 30

Figure 4-10: Ratio $\left(A_{I} / A_{E}\right)^{1 / 4}$ as a function of γ and δ, in the case of a cone-cylinder-
cone. Calculated by the compile... 33
Figure 4-11: Ratio $\left(A_{l} / A_{E}\right)^{1 / 4}$ as a function of γ and δ, in the case of a cone-cylinder-
cone. Calculated by the compiler. ... 34
Figure 4-12: Ratio $\left(A_{I} / A_{E}\right)^{1 / 4}$ as a function of γ and δ, in the case of a cone-cylinder-
cone. Calculated by the compile... 35
Figure 4-13: Ratio $\left(A_{I} / A_{E}\right)^{1 / 4}$ as a function of γ and δ, in the case of a cone-cylinder-
cone. Calculated by the compile.. 36
Figure 4-14: Ratio $\left(A_{l} / A_{E}\right)^{1 / 4}$ as a function of γ and δ, in the case of a cone-cylinder-
cone. Calculated by the compile... 37
Figure 4-15: Ratio $\left(A_{I} / A_{E}\right)^{1 / 4}$ as a function of γ and δ, in the case of a cone-cylinder-
cone. Calculated by the compiler. ... 38
Figure 4-16: Ratio $\left(A_{I} / A_{E}\right)^{1 / 4}$ as a function of γ and δ, in the case of a cone-cylinder-
cone. Calculated by the compile.. 39
Figure 4-17: Ratio $\left(A_{I} / A_{E}\right)^{1 / 4}$ as a function of γ and δ, in the case of a cone-cylinder-
cone. Calculated by the compile.. 40
Figure 4-18: Ratio $\left(A_{I} / A_{E}\right)^{1 / 4}$ as a function of γ and δ, in the case of a cone-cylinder-
cone. Calculated by the compile.. 41
Figure 4-19: Ratio $\left(A_{l} / A_{E}\right)^{1 / 4}$ as a function of γ and δ, in the case of a cone-cylinder-
cone. Calculated by the compile... 42
Figure 4-20: Ratio $\left(A_{/} / A_{E}\right)^{1 / 4}$ as a function of γ and δ, in the case of a cone-cylinder-
cone. Calculated by the compile.. 43
Figure 4-21: Ratio $\left(A_{I} / A_{E}\right)^{1 / 4}$ as a function of γ for any value of $H I R$, in the case of a
cone-cylinder-cone. Calculated by the compiler. .. 44
Figure 4-22: Ratio $\left(A_{I} / A_{E}\right)^{1 / 4}$ as a function of γ and $H I R$, in the case of a cone-cylinder-
cone. Calculated by the compile.. 45
Figure 4-23: Ratio $\left(A_{/} / A_{E}\right)^{1 / 4}$ as a function of γ and $H I R$, in the case of a cone-cylinder-
cone. Calculated by the compile.. 46

Figure 4-24: Ratio $\left(A_{I} / A_{E}\right)^{1 / 4}$ as a function of γ and H / R, in the case of a cone-cylindercone. Calculated by the compiler.47

Figure 4-25: Ratio $\left(A_{I} / A_{E}\right)^{1 / 4}$ as a function of γ and H / R, in the case of a cone-cylindercone. Calculated by the compiler48

Figure 4-26: Ratio $\left(A_{\|} / A_{E}\right)^{1 / 4}$ as a function of H / R, in the case of a prism. The curves plotted are those corresponding to the largest and smallest areas projected from the Sun. Circular cylinder, $n=\infty$. Calculated by the compiler.50

Figure 4-27: Ratio $\left(A_{l} / A_{E}\right)^{1 / 4}$ as a function of $H I R$, in the case of a prism. The curves plotted are those corresponding to the largest and smallest areas projected from the Sun. The values corresponding to $H I R \leq 1$ are also plotted in the previous figure. Circular cylinder, $n=\infty$. Calculated by the compiler51

Figure 4-28: Ratio $\left(A_{\|} / A_{E}\right)^{1 / 4}$ as a function of $H I R$, in the case of a prism. The curves plotted are those corresponding to the largest and smallest areas projected from the Sun. Circular cylinder, $n=\infty$. Calculated by the compiler.52

Figure 4-29: Ratio $\left(A_{\|} / A_{E}\right)^{1 / 4}$ as a function of H / R, in the case of a prism. The curves plotted are those corresponding to the largest and smallest areas projected from the Sun. The values corresponding to $H I R \leq 1$ are also plotted in the previous figure. Circular cylinder, $n=\infty$. Calculated by the compiler.53

Figure 4-30: Ratio $\left(A_{\|} / A_{E}\right)^{1 / 4}$ as a function of H / R, in the case of a prism. The curves plotted are those corresponding to the largest and smallest areas projected from the Sun. Circular cylinder, $n=\infty$. Calculated by the compiler.54

Figure 4-31: Ratio $\left(A_{\|} / A_{E}\right)^{1 / 4}$ as a function of $H I R$, in the case of a prism. The curves plotted are those corresponding to the largest and smallest areas projected from the Sun. The values corresponding to $H I R \leq 1$ are also plotted in the previous figure. Circular cylinder, $n=\infty$. Calculated by the compiler.55

Figure 4-32: Ratio $\left(A_{l} / A_{E}\right)^{1 / 4}$ as a function of $H I R$, in the case of a prism. The curves plotted are those corresponding to the largest and smallest areas projected from the Sun. Circular cylinder, $n=\infty$. Calculated by the compiler.56

Figure 4-33: Ratio $\left(A_{\|} / A_{E}\right)^{1 / 4}$ as a function of $H I R$, in the case of a prism. The curves plotted are those corresponding to the largest and smallest areas projected from the Sun. The values corresponding to $H I R \leq 1$ are also plotted in the previous figure. Circular cylinder, $n=\infty$. Calculated by the compiler57

Figure 4-34: Ratio $\left(A_{/} / A_{E}\right)^{1 / 4}$ as a function of H / R, in the case of a prism. The curves plotted are those corresponding to the largest and smallest areas projected from the Sun. Circular cylinder, $n=\infty$. Calculated by the compiler.58

Figure 4-35: Ratio $\left(A_{\|} / A_{E}\right)^{1 / 4}$ as a function of $H I R$, in the case of a prism. The curves plotted are those corresponding to the largest and smallest areas projected from the Sun. The values corresponding to $H / R \leq 1$ are also plotted in the previous figure. Circular cylinder, $n=\infty$. Calculated by the compiler59

Figure 4-36: Ratio $\left(A_{l} / A_{E}\right)^{1 / 4}$ as a function of H / R, in the case of a pyramid. The curves plotted are those corresponding to the largest and smallest areas projected from the Sun. Circular cone, $n=\infty$. Calculated by the compiler.61

Figure 4-37: Ratio $\left(A_{l} / A_{E}\right)^{1 / 4}$ as a function of $H I R$, in the case of a pyramid. The curves
plotted are those corresponding to the largest and smallest areas projected
from the Sun. The values corresponding to $H I R \leq 1$ are also plotted in the
previous figure. Circular cone, $n=\infty$. Calculated by the compiler 62

CEN/CLC/TR 17603-31-03:2021 (E)

Figure 4-38: Ratio $\left(A_{\|} / A_{E}\right)^{1 / 4}$ as a function of H / R, in the case of a pyramid. The curves plotted are those corresponding to the largest and smallest areas projected from the Sun. Circular cone, $n=\infty$. Calculated by the compiler.
Figure 4-39: Ratio $\left(A_{l} / A_{E}\right)^{1 / 4}$ as a function of H / R, in the case of a pyramid. The curves plotted are those corresponding to the largest and smallest areas projected from the Sun. The values corresponding to $H / R \leq 1$ are also plotted in the previous figure. Circular cone, $n=\infty$. Calculated by the compiler.
Figure 4-40: Ratio $\left(A_{I} / A_{E}\right)^{1 / 4}$ as a function of H / R, in the case of a pyramid. The curves plotted are those corresponding to the largest and smallest areas projected from the Sun. Circular cone, $n=\infty$. Calculated by the compiler.
Figure 4-41: Ratio $\left(A_{/} / A_{E}\right)^{1 / 4}$ as a function of H / R, in the case of a pyramid. The curves plotted are those corresponding to the largest and smallest areas projected from the Sun. The values corresponding to $H / R \leq 1$ are also plotted in the previous figure. Circular cone, $n=\infty$. Calculated by the compiler.
Figure 4-42: Ratio $\left(A_{I} / A_{E}\right)^{1 / 4}$ as a function of H / R, in the case of a pyramid. The curves plotted are those corresponding to the largest and smallest areas projected from the Sun. Circular cone, $n=\infty$. Calculated by the compiler.
Figure 4-43: Ratio $\left(A_{I} / A_{E}\right)^{1 / 4}$ as a function of H / R, in the case of a pyramid. The curves plotted are those corresponding to the largest and smallest areas projected from the Sun. The values corresponding to $H I R \leq 1$ are also plotted in the previous figure. Circular cone, $n=\infty$. Calculated by the compiler.
Figure 4-44: Ratio $\left(A_{\|} / A_{E}\right)^{1 / 4}$ as a function of H / R, in the case of a pyramid. The curves plotted are those corresponding to the largest and smallest areas projected from the Sun. Circular cone, $n=\infty$. Calculated by the compiler.
Figure 4-45: Ratio $\left(A_{I} / A_{E}\right)^{1 / 4}$ as a function of H / R, in the case of a pyramid. The curves plotted are those corresponding to the largest and smallest areas projected from the Sun. The values corresponding to $H I R \leq 1$ are also plotted in the previous figure. Circular cone, $n=\infty$. Calculated by the compiler.70

Figure 4-46: Ratio $\left(A_{I} / A_{E}\right)^{1 / 4}$ as a function of $H I R$, in the case of a pyramid - prism pyramid. The curves plotted are those corresponding to the largest and smallest areas projected from the Sun. Cone - cylinder - cone, $n=\infty$. Calculated by the compiler.
Figure 4-47: Ratio $\left(A_{I} / A_{E}\right)^{1 / 4}$ as a function of $H I R$, in the case of a pyramid - prism pyramid. The curves plotted are those corresponding to the largest and smallest areas projected from the Sun. The values corresponding to $H / R \leq$ 1 are also plotted in the previous figure. Cone - cylinder - cone, $n=\infty$. Calculated by the compiler.
Figure 4-48: Ratio $\left(A_{l} / A_{E}\right)^{1 / 4}$ as a function of $H I R$, in the case of a pyramid - prism pyramid. The curves plotted are those corresponding to the largest and smallest areas projected from the Sun. Cone - cylinder - cone, $n=\infty$. Calculated by the compiler.
Figure 4-49: Ratio $\left(A_{l} / A_{E}\right)^{1 / 4}$ as a function of $H I R$, in the case of a pyramid - prism pyramid. The curves plotted are those corresponding to the largest and smallest areas projected from the Sun. The values corresponding to $H \| \leq$ 1 are also plotted in the previous figure. Cone - cylinder - cone, $n=\infty$. Calculated by the compiler.

Figure 4-50: Ratio $\left(A_{I} / A_{E}\right)^{1 / 4}$ as a function of $H I R$, in the case of a pyramid - prism pyramid. The curves plotted are those corresponding to the largest and smallest areas projected from the Sun. Cone - cylinder - cone, $n=\infty$. Calculated by the compiler.75

Figure 4-51: Ratio $\left(A_{/} / A_{E}\right)^{1 / 4}$ as a function of H / R, in the case of a pyramid - prism
pyramid. The curves plotted are those corresponding to the largest and
smallest areas projected from the Sun. The values corresponding to $H I R \leq$
1 are also plotted in the previous figure. Cone - cylinder - cone, $n=\infty$.
Calculated by the compiler.

Figure 4-52: Ratio $\left(A_{/} / A_{E}\right)^{1 / 4}$ as a function of H / R, in the case of a pyramid - prism
pyramid. The curves plotted are those corresponding to the largest and
smallest areas projected from the Sun. Cone - cylinder - cone, $n=\infty$.
Calculated by the compiler. 77

Figure 4-53: Ratio $\left(A_{/} / A_{E}\right)^{1 / 4}$ as a function of H / R, in the case of a pyramid - prism
pyramid. The curves plotted are those corresponding to the largest and
smallest areas projected from the Sun. The values corresponding to $H I R \leq$
1 are also plotted in the previous figure. Cone - cylinder - cone, $n=\infty$.
Calculated by the compiler. 78

Figure 4-54: Ratio $\left(A_{l} / A_{E}\right)^{1 / 4}$ as a function of $H I R$, in the case of a pyramid - prism
pyramid. The curves plotted are those corresponding to the largest and
smallest areas projected from the Sun. Cone - cylinder - cone, $n=\infty$.
Calculated by the compiler. 79
Figure 4-55: Ratio $\left(A_{I} / A_{E}\right)^{1 / 4}$ as a function of $H I R$, in the case of a pyramid - prism - pyramid. The curves plotted are those corresponding to the largest and smallest areas projected from the Sun. Cone - cylinder - cone, $n=\infty$. Calculated by the compiler. 80
Figure 4-56: Temperature distribution on sphere. No spin. No internal radiation. Calculated by the compiler 81
Figure 4-57: Temperature distribution on sphere including internal radiation. No spin. Calculated by the compiler. 83
Figure 4-58: Temperature distribution on a two-dimensional cylinder. No spin. No internal radiation. Calculated by the compiler. 85
Figure 4-59: Temperature distribution on a two - dimensional spinning cylinder for several μ an γ values. No internal radiation. Calculated by the compiler 87
Figure 4-60: Temperature distribution on a two - dimensional spinning cylinder for several μ an γ values. No internal radiation. Calculated by the compiler. 88
Figure 4-61: Temperature distribution on cylinder. No spin. No internal radiation. From Nichols (1961) [11]. 90Figure 4-62: Temperature distribution on a cylindrical surface whose cross section is arectangle of aspect - ratio $\lambda=0,5$. No internal radiation. Calculated by thecompiler.92
Figure 4-63: Temperature distribution on a cylindrical surface whose cross section is arectangle on aspect - ration $\lambda=1$. No internal radiation. Calculated by thecompiler.93
Figure 4-64: Temperature distribution on a cylindrical surface whose cross section is a rectangle on aspect - ration $\lambda=2$. No internal radiation. Calculated by the compiler. 94

CEN/CLC/TR 17603-31-03:2021 (E)

Figure 4-65: Temperature distribution on cone. No spin. No internal radiation. From Nichols (1961) [11].96
Figure 4-66: Temperature distribution on cone. No spin. No internal radiation. From Nichols (1961) [11]. 97
Figure 4-67: Temperature distribution on cone. No spin. No internal radiation. From Nichols (1961) [11]. 98
Figure 5-1: The ratio $T_{R P} / T_{P}$ vs. the optical characteristics of the surface for different values of $F_{S P}$. Shaded zone of a is enlarged in b. Calculated by the compiler 101
Figure 5-2: Radiation equilibrium temperature $T_{R P}$ vs. ratio $T_{R P} / T_{P}$. Incoming radiation from different planets. After NASA - SP - 3051 (1965). 102
Figure 5-3: Different estimates of radiation equilibrium temperature $T_{R P} \mathrm{vs}$. $T_{R P} / T_{P}$, for radiation from the Earth. Plotted from data by Johnson (1965) [9]. 103
Figure 5-4: $F_{s P}$ as a function of λ and h / R_{P} in the case of a flat plate absorbing and emitting on one side. Calculated by the compiler 105
Figure 5-5: $F_{s p}$ as a function of h / R_{P} in the case of a sphere. Calculated by the compiler 106
Figure 5-6: $F_{S P}$ as a function of λ and h / R_{P} in the case of a hemispherical surface absorbing and emitting on outer face. Calculated by the compiler 107
Figure 5-7: $F_{S P}$ as a function of λ and h / R_{p} in the case of a circular cylinder with insulated bases. Calculated by the compiler. 109
Figure 5-8: $F_{S P}$ as a function of λ and h / R_{P} in the case of a finite height circular cylinder. Calculated by the compiler 110
Figure 5-9: $F_{S P}$ as a function of λ and h / R_{P} in the case of a finite height circular cylinder. Calculated by the compiler 111
Figure 5-10: $F_{S P}$ as a function of λ and h / R_{P} in the case of a finite height circular cylinder. Calculated by the compiler. 112
Figure 5-11: $F_{S P}$ as a function of λ and h / R_{P} in the case of a finite height circular cylinder. Calculated by the compiler 113
Figure 5-12: $F_{S P}$ as a function of λ and h / R_{P} in the case of a finite height circular cylinder. Calculated by the compiler. 114
Figure 5-13: $F_{S P}$ as a function of λ and h / R_{P} in the case of a finite height circular cylinder. Calculated by the compiler. 115
Figure 5-14: $F_{S P}$ as a function of λ and h / R_{P} in the case of a finite height circular cylinder. Calculated by the compiler 116
Figure 5-15: $F_{S P}$ as a function of λ and h / R_{P} in the case of a finite height circular cylinder. Calculated by the compiler 117
Figure 5-16: $F_{S P}$ as a function of λ and h / R_{P} in the case of a finite height circular cylinder. Calculated by the compiler 118
Figure 5-17: $F_{S P}$ as a function of λ and h / R_{P} in the case of a circular cone with insulated base. Calculated by the compiler 120
Figure 5-18: $F_{S P}$ as a function of λ and h / R_{P} in the case of a circular cone with insulated base. Calculated by the compiler 121
Figure 5-19: $F_{S P}$ as a function of λ in the case of a finite height circular cone. Calculated by the compiler123
Figure 5-20: $F_{S P}$ as a function of λ in the case of a finite height circular cone. Calculated by the compiler 124
Figure 6-1: The ratio $T_{R A} / T_{A}$ vs. the optical characteristics of the surface for different values of F. Shaded zone of a is enlarged in b. Calculated by the compiler 126
Figure 6-2: Albedo equilibrium temperature, $T_{R A}$, vs. dimensionless ratio $T_{R A} / T_{A}$. Incoming albedo from different planets. After Anderson (1969) [1]. 127
Figure 6-3: Different estimates of albedo equilibrium temperature $T_{R A}$, vs. $T_{R A} / T_{A}$ in case of the Earth. Calculated by the compiler 128
Figure 6-4: Albedo view factor F vs. h / R_{P} for different values of θ_{s} in the case of a flat plate ($\lambda=0^{\circ}, \phi_{c}=180^{\circ}$). From Bannister (1965) [2]. 131
Figure 6-5: Albedo view factor F vs. h / R_{P} for different values of θ_{s} in the case of a flat plate ($\lambda=30^{\circ}, \phi_{c}=0^{\circ}$). From Bannister (1965) [2]. 132
Figure 6-6: Albedo view factor F vs. h / R_{P} for different values of θ_{s} in the case of a flat plate ($\lambda=30^{\circ}, \phi_{c}=90^{\circ}$). From Bannister (1965) [2]. 133
Figure 6-7: Albedo view factor F vs. h / R_{P} for different values of θ_{s} in the case of a flat plate ($\lambda=30^{\circ}, \phi_{c}=180^{\circ}$). From Bannister (1965) [2] 134
Figure 6-8: Albedo view factor F vs. h / R_{p} for different values of θ_{s} in the case of a sphere. From Cunningham (1961) [6] 136
Figure 6-9: Albedo view factor F vs. h / R_{p} for different values of θ_{s} in the case of a sphere. From Cunningham (1961) [6] 137
Figure 6-10: Albedo view factor F vs. h / R_{P} for different values of θ_{S} in the case of a sphere. Calculated by the compiler. 138
Figure 6-11: Albedo view factor F vs. h / R_{P} for different values of θ_{s} in the case of a cylinder ($\lambda=0^{\circ}, \phi_{c}=0^{\circ}, 180^{\circ}$). From Bannister (1965) [2]. 140
Figure 6-12: Albedo view factor F vs. h / R_{P} for different values of θ_{S} in the case of a cylinder ($\lambda=60^{\circ}, \phi_{c}=0^{\circ}$). From Bannister (1965) [2]. 141
Figure 6-13: Albedo view factor F vs. h / R_{P} for different values of θ_{s} in the case of a cylinder ($\lambda=60^{\circ}, \phi_{c}=90^{\circ}$). From Bannister (1965) [2]. 142
Figure 6-14: Albedo view factor F vs. h / R_{P} for different values of θ_{S} in the case of a cylinder ($\lambda=60^{\circ}, \phi_{c}=180^{\circ}$). From Bannister (1965) [2]. 143
Tables
Table 5-1: Relevant data on the Planets and the Moon 104
Table 6-1: Relevant data on the Planets and the Moon 129

European Foreword

This document (CEN/CLC/TR 17603-31-03:2021) has been prepared by Technical Committee CEN/CLC/JTC 5 "Space", the secretariat of which is held by DIN.

It is highlighted that this technical report does not contain any requirement but only collection of data or descriptions and guidelines about how to organize and perform the work in support of EN 1660331.

This Technical report (TR 17603-31-03:2021) originates from ECSS-E-HB-31-01 Part 3A.
Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN [and/or CENELEC] shall not be held responsible for identifying any or all such patent rights.

This document has been prepared under a mandate given to CEN by the European Commission and the European Free Trade Association.

This document has been developed to cover specifically space systems and has therefore precedence over any TR covering the same scope but with a wider domain of applicability (e.g.: aerospace).

Scope

Factors affecting the equilibrium temperature of a spacecraft surface are described in this Part 3 using simple geometrical configurations and basic assumptions.

Methods for conducting calculations on the affect of Solar, planetary and albedo radiation are given taking into consideration the internal and immediate environmental factors and incorporating the various configurations and dimensions of the constituent parts.

The Thermal design handbook is published in 16 Parts

TR 17603-31-01
TR 17603-31-02
TR 17603-31-03
TR 17603-31-04
TR 17603-31-05

TR 17603-31-06
TR 17603-31-07
TR 17603-31-08
TR 17603-31-09
TR 17603-31-10
TR 17603-31-11
TR 17603-31-12
TR 17603-31-13
TR 17603-31-14
TR 17603-31-15
TR 17603-31-16

Thermal design handbook - Part 1: View factors
Thermal design handbook - Part 2: Holes, Grooves and Cavities
Thermal design handbook - Part 3: Spacecraft Surface Temperature
Thermal design handbook - Part 4: Conductive Heat Transfer
Thermal design handbook - Part 5: Structural Materials: Metallic and Composite

Thermal design handbook - Part 6: Thermal Control Surfaces
Thermal design handbook - Part 7: Insulations
Thermal design handbook - Part 8: Heat Pipes
Thermal design handbook - Part 9: Radiators
Thermal design handbook - Part 10: Phase - Change Capacitors
Thermal design handbook - Part 11: Electrical Heating
Thermal design handbook - Part 12: Louvers
Thermal design handbook - Part 13: Fluid Loops
Thermal design handbook - Part 14: Cryogenic Cooling
Thermal design handbook - Part 15: Existing Satellites
Thermal design handbook - Part 16: Thermal Protection System

EN Reference	Reference in text	Title
EN 16601-00-01	ECSS-S-ST-00-01	ECSS System - Glossary of terms

All other references made to publications in this Part are listed, alphabetically, in the Bibliography.
koniec náhl’adu - text d’alej pokračuje v platenej verzii STN

