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Figure 6-30: Guide for the selection of the curves given in Figure 6-31 and Figure 6-32
concerning in-line tube banks of different relative pitches. From ESDU
73031 (1973) (571 eeeeeeeeeeeeee ettt e e e e e e e e e e e e e e e e e e nnnnneeeeaaaeeaeanns 86
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Figure 6-31: Reference Nusselt number, Nu,, for Pr, = 1, as a function of Reynolds
number, Re. In-line tube banks. See Figure 6-30 for the meaning of the
numbers which appear on the curves. From ESDU 73031 (1973) [57]. .............. 87

Figure 6-32: Reference Nusselt number, Nu,, for Pr, = 1, as a function of Reynolds
number. Re. In-line tube banks. See Figure 6-30 for the meaning of the
numbers which appear on the curves. From ESDU 73031 (1973) [57]. .............. 88

Figure 6-33: Reference Nusselt number, Nu,, for Pr, = 1, as a function of Reynolds
number. Re. In-line tube banks. Staggered tube banks. From ESDU 73031
(1973 ) 57 ettt ettt 89

Figure 6-34: Effect of the Prandtl number, Prs,, on the reference Nusselt number, Nu,
for both in-line and staggered tube banks. From ESDU 73031 (1973) [57]......... 89

Figure 6-35: The factor F4 to account for variable fluid properties. From ESDU 73031

(RS54 SRR 90
Figure 6-36: The factor F, accounting for abnormal number of rows vs. that number, N.

From ESDU 73031 (1973) [57]. coeee e 90
Figure 6-37: The factor F3 accounting for the effect of yaw vs. the inclination angle, 6.

From ESDU 73031 (1973) [57]. ceeeeeiieiieiee et e e e 90
Figure 6-38: The factor F, for estimating the Nusselt number of the n-th row. From

ESDU 73031 (1973) [57]. o oeee e 91

Figure 7-1: Friction characteristics associated with four types of roughness geometry.
Notice that the equivalent roughness is different in every case. From
REYNOIAS (1974). ..t e e 96

Figure 7-2: Friction factor, A, as a function of Reynolds number, Re, for different
values of the relative roughness, e/D: Cylindrical tubes of circular cross
section. From Idel'cik (1969) [97]......cceeiimeiiiie e, 105

Figure 7-3: Correction factor, K, to be used when the cross section of the duct is not
circular. Laminar flow. K = 1 for turbulent flow through hydraulically smooth

ducts. From ESDU 66027 (1966) [46]. ......ccuuuviieieieeeaeeiiiieeeeee e 105
Figure 7-4: Boundary between short and long circular arc bends. From ESDU 67040

(TOBT7) [A T ettt e e e e e e e e e e e aeeeens 106
Figure 7-5: Boundaries between laminar, transitional and turbulent flows in long circular

arc bends. From ESDU 67040 (1967) [47]. ...ceeeeeeeeeeeieee e, 106

Figure 7-6: Pressure loss coefficient per unit bend angle, ck/6, as a function of the
dimensionless radius of curvature of bend centerline, R/D, for different
values of Reynolds number, Re. Either circular or square cross section.
From ESDU 67040 (1967) [A7]. ..cceieeeeeeeeee ettt 107

Figure 7-7: Pressure loss coefficient, ck, as a function of the dimensionless radius of
bend centerline, R/D, for different values of Reynolds number, Re. Laminar
flow through short circular arc bends. From ESDU 67040 (1967) [47]. ............. 108

Figure 7-8: Pressure loss coefficient, ck, as a function of the dimensionless radius of
bend centerline, R/D, for different values of bend angle, 6. Turbulent flow
through short circular arc bends. Either circular or square cross section.
From ESDU 67040 (1967) [47]. .eeeeieeeeeee ettt 109

Figure 7-9: Pressure loss coefficient, ck, for short circular arc bends, having a short
downstream tangent of length, L4, as a function of L«/D, for different values
of the dimensionless radius of bend centerline, R/D. Turbulent flow. Either
circular or square cross section. From ESDU 67040 (1967) [47]. ....vvveeeeeeennnnns 110
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Figure 7-10: The factor a4 to account for the aspect-ratio of the bend cross section.

From ESDU 67040 (1967) [47]. ..ceeee e 110
Figure 7-11: The factor a» to account for the bend angle. From ESDU 67040 (1967)
4 P RO PO P PPPRRN 111

Figure 7-12: Pressure loss coefficient, ck, for single mitre bends, as a function of bend
angle, 6, for different values of the dimensionless length, L«/D, of the
downstream tube. Turbulent flow. Either circular or square cross section.
From ESDU 67040 (1967) [47]. ..ceee e 111

Figure 7-13: Factor S, which account for the interaction between two 90° -circular arc
bends-, as a function of the dimensionless distance between both bends,
Lo/D. From ESDU 68035 (1968) [49]. ...coevviiiieii e 112

Figure 7-14: Factor g, which account for the interaction between two mitre bends, as a
function of the dimensionless distance between both bends, L./D. From
ESDU 68035 (1968) [49]. ...cooeeiieeeeee e 113

Figure 7-15: Total-pressure loss coefficient, ck:, as a function of Reynolds number,
Rep1, for different values of the area ratio, . Enlargement with a duct
downstream 4D- long. Uniform incoming flow at low Reynolds number.

From ESDU 72011 (1972) [54]. .o eiieieeeiee ettt 113
Figure 7-16: Different velocity profiles upstream of a sudden enlargement. From ESDU
F O B B G 7 5 - SRR 114

Figure 7-17: Total-pressure loss coefficient, ck:, as a function of area ratio, .
Enlargement with a duct downstream 4D> long. Numbers on curves indicate
the velocity profile in Figure 7-22 for which the curve applies. From ESDU
720171 (1972) [B4]. ceeeeeeeee ettt ettt e e e e e e e e e s e e aaaeeaeens 114

Figure 7-18: Static-pressure loss coefficient, -cks, as a function of area ratio, .
Enlargement with a duct downstream 4D> long. Numbers on curves indicate
the velocity profile in Figure 7-22 for which the curve applies. From ESDU
(TOT2) [BA]. ettt 115

Figure 7-19: Total-pressure loss coefficient, ck:, as a function of Reynolds number,
Repy, for different values of the area ratio, . The pressure loss coefficient
is expressed in terms of the dynamic pressure at clause 6. From Idel'cik
(19B89) [97 .ottt e e e e e e e e e e e e e e e e e e raeeaaeeas 115

Figure 7-20: Reference values of the pressure loss coefficient, ck, as a function of the
ratio, ¢, of the area available for fluid flow to the total area of the duct cross

section. Perforated plates and orifices. From ESDU 72010 (1972) [53]............. 116
Figure 7-21: The factor a3 to account for the effect of plate thickness when t/d < 0,8. cxo

is given in Figure 7-19. From ESDU 72010 (1972) [53]. ...ccoiiiiiiiiiieeeeeeeeeee 117
Figure 7-22: The factor a4 to account for the effect of plate thickness when /d > 0,8.

Cko,g is given in Figure 7-19. From ESDU 72010 (1972) [53]....ccvvvvveviviieeiieeeenee. 118

Figure 7-23: Comparison between the pressure loss coefficients, ck, in the intermediate
region calculated by assuming either of the two extreme cases, fully-

separated or reattached orifice flow. From ESDU 72010 (1972) [53]................ 119
Figure 7-24: Reference pressure loss coefficient, ck, as a function of porosity, ¢.
Round-wire gauzes. From ESDU 72009 (1972) [52].......cceeeeieeeeieeiiieeeeeeeeeee 119

Figure 7-25: Factor s to account for low Reynolds number effects in round-wire
gauzes. Reynolds number based on the wire diameter. From ESDU 72009
(TOT2) [52]. ettt et 120
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Figure 7-26: Reference pressure loss coefficient, ck., as a function of Reynolds
number, Re, for diaphragm and butterfly valves fully open. Prepared by the
compiler after ESDU 69022 (1969) [51]. . uvviriiiiieee e 120

Figure 7-27: Factor as, which accounts for the partial opening of the valve, as a
function of the degree of valve opening, ¢. §is defined as the ratio of valve
control travel from closed position to total valve control travel. From ESDU
TS0 G R L1 ) N T R 121

Figure 7-28: Graphics for estimating the pressure loss coefficient, ck, for in-line tube
banks of several relative pitches, s, s, and yaw angles, 6. The influence of
the heat exchange on the pressure loss is taken into account through the
tube bank inlet and exit temperatures, T; and T,, respectively. From Idel'cik

Figure 7-29: Graphics for estimating the pressure loss coefficient, ck, for staggered
tube banks of several relative pitches, s, si, and yaw angles, 6. The
influence of the heat exchange on the pressure loss is taken into account
through the tube bank inlet and exit temperatures, T; and T,, respectively.
From Idel'Cik (1969) [97]....ccoi i 123

Figure 7-30: Pressure loss coefficient, ck, as a function of the ratio of lateral to total
mass flow rates in branching tubes. The mixed confluence-branching case
is not considered. From Idel'cik (1969) [97]. ....ceeiiiiiiiiie e, 124

Figure 8-1: The ratio 2St/f, for turbulent flow in constant wall temperature cylindrical
tubes, as calculated by use of several expressions, vs. the Reynolds
number, Re. E: Correlation of experimental results. From Goldstein (1950)
[73]. R: Reynolds Analogy. P: Prandtl Analogy. K: von Karman Analogy.
Calculated by the COMPIIET. ........ooviiiiiii e 127

Figure 9-1: Constant power heat transfer ratio, (ha-ho)p, vs. Reynolds number based on
non-augmentative conditions, Re,. From Bergles (1969) [8].........ccccceiriiiinnnnnn. 136

Figure 9-2: Roughness function us*(e*)for Nikuradse's sand roughness. (1)
Hydraulically smooth. (2) us" = 8,48, completely rough. From Schlichting
(T9B0) [157 ] e eeeeeeeeeeee ettt ettt e e eeseensnssnnnnnnnnnnnne 139

Figure 9-3: Constant power heat transfer ratio, (ha-ho)e, vs. Reynolds number based on
non-augmentative conditions, Re,. Curves A to D are from Bergles (1969)
[8], curves E and F have been calculated by the compiler after Webb,

Eckert & Goldstein (1971) [186]. .......uuviiiiiiieieeie e 139
Figure 9-4: Roughness function ue*(e*,b/e) for repeated-rib roughness. From Webb et

Al (TO71) [18B]. e e et e e e e et e e e e e e e e e e e e e e e e e e e e aeeeeeeas 142
Figure 9-5: Flow pattern near the wall for different values of b/e............cccccconiiin. 142

Figure 9-6: Constant power heat transfer ratio, (ha-ho)p, vs. Reynolds number based on
non-augmentative conditions, Re,. Curves A, B, C are from Bergles (1969)
[8], curves D to G have been calculated by the compiler after Sheriff &

GUMIEY (1966) [166].....eeeeeeeeeeieieieeeeieieeeeeeeeeeeeeeaeeaesesaeeeaesseessnnsssnnsnnnnsnnnnnnnnnnnnnns 143
Figure 9-7: Roughness function, ucs*(e*,b/e), for wire coil roughness. Plotted by the

compiler after Sheriff & Gumley (1966) [166]...........ccvvvveeiiieeiiiiiiee e, 146
Figure 9-8: Velocity and Temperature distributions across the annulus. ...................c......... 147

Figure 9-9: Constant power heat transfer ratio, (ho/ho)e, vs. Reynolds number based on
non-augmentative conditions, Re,. From Carnavos (1974) [19].......ccccceeeeee. 149
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Figure 9-10: Constant power heat transfer ratio, (ha/ho)r, vs. Reynolds number based
on non-augmentative conditions, Re,. From Carnavos (1974) [19]................... 151

Figure 9-11: Constant power heat transfer ratio, (ho/ho)e, vs. Reynolds number based
on non-augmentative conditions, Re,. From Carnavos (1974) [19].........cccc...... 153

Figure 9-12: Constant power heat transfer ratio, (ho/ho)e, vs. Reynolds number based
on non-augmentative conditions, Re,. From Bergles (1969) [8].............cceeeeen. 156

Figure 9-13: Constant power heat transfer ratio, (ha/ho)r, vs. Reynolds number based
on non-augmentative conditions, Re,. Calculated by the compiler after
Hong & Bergles (1976) [91]. ...oi i 157

Figure 9-14: Constant power heat transfer ratio, (ho/ho)e, vs. Reynolds number based
on non-augmentative conditions, Re,. Curves A to | are from Bergles
(1969) [8], curves J to M have been calculated by the compiler after
Thorsen & Landis (1968) [178]. .....ciiieeiiiieiicee e e 160

Figure 9-15: Isothermal Nusselt number, Nua. divided by the ratio of friction factors, T,
vs. the Reynolds number, Rer, for different values of the Prandtl number,

Pr. Calculated by the compiler after Thorsen & Landis (1968) [178]................. 163
Figure 9-16: Constant power heat transfer ratio, (h/ho)r, vs. Reynolds number based
on non-augmentative conditions, Re,. From Bergles (1969) [8].............cceeeeens 164

Figure 9-17: Constant power heat transfer ratio, (ha/ho)r, vs. Reynolds number based
on non-augmentative conditions, Re,. Curves A, B, C from Bergles (1969)
[8], curves D, E, F from Bergles, Lee & Mikic (1969) [9]. ....vvveeiiiiiriiiiiiiiieeeee, 167

Figure 10-1: Product of cooling effectiveness, F, of several fluids times the equivalent
length of the loop, Lg, as functions of the difference between the heat
source and the inlet temperature, Ts- T, for the following reference values:
Inner diameter of the duct, D = 102 m. Diabatic length of the duct, L =1 m.
Heat flux, g = 250 W.m for Air, Carbon Dioxide, Carbon Tetrachloride,
Hydrogen and Nitrogen, g = 1000 W.m for Ethylene Glycol, Flutec PP50
and Water. Calculated by the compiler. ..........cc.oooviiiiiiiiii e, 171

Figure 10-2: Schematic representation of the fluid loop considered for estimating the
fluid cooling effectiveness. ... 172

Figure 10-3: Graphical method allowing for values of heat flux, g, and inner diameter of
the duct, D, different from those used in Figure 10-1..........cccciiiiiiiiiiiiiiiieen. 174

Figure 10-4: Graphic for estimating the product of the fluid cooling effectiveness, F,
times the equivalent length of the loop, Lg, as a function of the difference
between the heat source and the inlet fluid temperature, Ts- T.. Fluid: Air.
Reference values: D =102 m, L =1 m, g = 250 W.m™. Values FL for
different D and q, yet L = 1, can be calculated graphically as is indicated in
the text. Prepared by the compiler...........ccoooiiiiiiiii e, 175

Figure 10-5: Graphic for estimating the product of the fluid cooling effectiveness, F,
times the equivalent length of the loop, Lg, as a function of the difference
between the heat source and the inlet fluid temperature, Ts- T.. Fluid:
Ethylene Glycol. Reference values: D =102 m, L=1m, g = 1000 W.m?2,
Values FLe for different D and q, yet L = 1, can be calculated graphically as
is indicated in the text. Prepared by the compiler. ...........ccccoeiiiiiiee 176

Figure 10-6: Graphic for estimating the product of the fluid cooling effectiveness, F,
times the equivalent length of the loop, Lg, as a function of the difference
between the heat source and the inlet fluid temperature, Ts- T.. Fluid:
Flutec PP50. Reference values: D =102 m, L=1m, g = 1000 W.m?2,
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Values FLe for different D and q, yet L = 1, can be calculated graphically as
is indicated in the text. Prepared by the compiler. ... 177

Figure 10-7: Graphic for estimating the product of the fluid cooling effectiveness, F,
times the equivalent length of the loop, Lk, as a function of the difference
between the heat source and the inlet fluid temperature, Ts- T.. Fluid:
Water. Reference values: D=102m, L =1m, g=1000 W.m™. Values FLe
for different D and q, yet L = 1, can be calculated graphically as is indicated

in the text. Prepared by the compiler. ... 178
Figure 10-8: Vapor pressure, psa, of Water vs. temperature, T. From Vargaftik (1975)

< 25 ) PSP PPRPPPPRRPPRRRRR 186
Figure 10-9: Density, p, of Water vs. temperature, T. From Vargaftik (1975) [183]. ............ 186
Figure 10-10: Specific heat, c,, of Water vs. temperature, T. From Vargaftik (1975)

S 26 ) PSPPSR PPPUUPPPRPRRRRRN 186
Figure 10-11: Thermal conductivity, k, of Water vs. temperature, T. From Vargaftik

QR Y T = 2 ) PR 187
Figure 10-12: Dynamic viscosity, u, of Water vs. temperature, T. From Vargaftik (1975)
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Figure 10-13: Vapor pressure, psa;, of Carbon Tetrachloride vs. temperature, T. From

Vargaftik (1975) [183]. ... 187
Figure 10-14: Density, p, of Carbon Tetrachloride vs. temperature, T. From Vargaftik

(RS 5 T < 2 ) PP 188
Figure 10-15: Specific heat, c¢,, of Carbon Tetrachloride vs. temperature, T. From

Vargaftik (1975) [183]. ... 188
Figure 10-16: Thermal conductivity, k, of Carbon Tetrachloride vs. temperature, T.

From Vargaftik (1975) [183]...cceii i 188
Figure 10-17: Dynamic viscosity, u, of Carbon Tetrachloride vs. temperature, T. From

Vargaftik (1975) [183]. . .ueueee e e e e e e e e e e e e e eas 189
Figure 10-18: Vapor pressure, psa;, of Coolanol 15, 25, 35 and 45 vs. temperature, T.

From Filippi & Guerra (1977) [B4]. ...covvveeeii e 189
Figure 10-19: Density, p, of Coolanol 15, 25, 35 and 45 vs. temperature, T. From Filippi

& GUEITA (T77) [BA]. weee et e e e e 189
Figure 10-20: Specific heat, c¢,, of Coolanol 15, 25, 35 and 45 vs. temperature, T. From

Filippi & Guerra (1977) [64]. ...ooeeeeeeeeeeeeeeeeeeeeeeee e 190
Figure 10-21: Thermal conductivity, k, of Coolanol 15, 25, 35 and 45 vs. temperature,

T. From Filippi & Guerra (1977) [B4]. ......uueueei e 190
Figure 10-22: Dynamic viscosity, u, of Coolanol 15, 25, 35 and 45 vs. temperature, T.

From Filippi & Guerra (1977) [64]. ..o 190
Figure 10-23: Kinematic viscosity, v, of DC 200 vs. temperature T. Numbers on curves

indicate the standard viscosity in cs. From DOW CORNING (1972) [38].......... 191
Figure 10-24: Freezing point, T, of Water/Glycol Solutions vs. Glycol mass fraction, s.

From Filippi & Guerra (1977) [64]. ..o 191

Figure 10-25: Vapor pressure, psa, of Water/Glycol Solutions vs. temperature, T.
Numbers on curves indicate Glycol mass fraction, c. From Filippi & Guerra
LS (7 SR 192
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Figure 10-26: Density, p, of Water/Glycol Solutions vs. temperature, T. Numbers on
curves indicate Glycol mass fraction, ¢. From Filippi & Guerra (1977) [64]. ...... 192

Figure 10-27: Specific heat, c,, of Water/Glycol Solutions vs. temperature, T. Numbers
on curves indicate Glycol mass fraction, ¢. From Filippi & Guerra (1977)

Figure 10-28: Thermal conductivity, k, of Water/Glycol Solutions vs. temperature, T.
Numbers on curves indicate Glycol mass fraction, ¢. From Filippi & Guerra
LS (7 SRR 193

Figure 10-29: Dynamic viscosity, u, of Water/Glycol Solutions vs. temperature, T.
Numbers on curves indicate Glycol mass fraction, ¢. From Filippi & Guerra
(TOT7) [B4]. e eeeeeeeeeeeeeeee ettt sssnssssssssnnnnnnnnnnnnes 194

Figure 10-30: Vapor pressure, psat, of Flutec PP-2, PP-9 and PP-50 vs. temperature, T.
Data are from Dunn & Reay (1976) [40] except those corresponding to
Flutec PP-50 which are from Wyn-Roberts (1974) [193]........cccooieiiiiiiiiiee. 194

Figure 10-31: Density, p, of Flutec PP-2, PP-9 and PP-50 vs. temperature, T. Data are
from Dunn & Reay (1976) [40] except those corresponding to Flutec PP-50

which are from Wyn-Roberts (1974) [193]. ....coo i 195
Figure 10-32: Specific heat, c,, of Flutec PP-50 vs. temperature, T. From Wyn-Roberts
(TO74) [103]. ettt ettt eeeeensesssnnssnnnnnnnes 195

Figure 10-33: Thermal conductivity, k, of Flutec PP-2, PP-9 and PP-50 vs. temperature,
T. Data are from Dunn & Reay (1976) [40] except those corresponding to
Flutec PP-50 which are from Wyn-Roberts (1974) [193].......ccccoieeiiiiiiiee 196

Figure 10-34: Dynamic viscosity, u, of Flutec PP-2, PP-9 and PP-50 vs. temperature, T.
Data are from Dunn & Reay (1976) [40] except those corresponding to

Flutec PP-50 which are from Wyn-Roberts (1974) [193].......ccooiiiiriiiiiiiieeeee, 196
Figure 10-35: Vapor pressure, psa, of Freon 11, 12, 13, 21, 22, 113, 114 and 142 vs.

temperature, T. From Vargaftik (1975) [183]. .....uuiiiiiiiiiiiiiieee e 197
Figure 10-36: Density, p, of Freon 11, 12, 13, 21, 22, 113, 114 and 142 vs.

temperature, T. From Vargaftik (1975) [183]. .....uueiiiiiiiiiiiiieeee e, 197
Figure 10-37: Specific heat, ¢, of Freon 11, 12, 13, 21, 22, 113, 114 and 142 vs.

temperature, T. From Filippi & Guerra (1977) [64]....cccoveeeiiiiiiiiiieeeeeeeee e, 197
Figure 10-38: Thermal conductivity, k, of Freon 11, 12, 13, 21, 22, 113, 114 and 142

vs. temperature, T. From Vargaftik (1975) [183]. .....vueiiiiiiiicie e, 198

Figure 10-39: Dynamic viscosity, x4, of Freon 11, 12, 13, 21, 22, 113, 114 and 142 vs.
temperature, T. Data are from Vargaftik (1975) [183] except those

corresponding to Freon 13 which are from Filippi & Guerra (1977) [64]............ 198
Figure 10-40: Vapor pressure, psa, of Freon E1, E2, E3, E4 and E5 vs. temperature, T.

From Filippi & Guerra (1977) [B4]. ....ovvvueiie e 198
Figure 10-41: Density, p, of Freon E1, E2, E3, E4 and E5 vs. temperature, T. From

Filippi & Guerra (1977) [64]. ..cooeeeeeeeeeeeeeeeeeeeee e 199
Figure 10-42: Specific heat, c¢,, of Freon E1, E2, E3, E4 and E5 vs. temperature, T.

From Filippi & Guerra (1977) [64]. ... 199
Figure 10-43: Thermal conductivity, k, of Freon E1, E2, E3, E4 and E5 vs. temperature,

T. From Filippi & Guerra (1977) [B4]. .....covveeeiii e 199
Figure 10-44: Dynamic viscosity, u, of Freon E1, E2, E3, E4 and E5 vs. temperature, T.

From Filippi & Guerra (1977) [64]. ... 200
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Figure 10-45: Vapor pressure, psa, of FC 75 vs. temperature, T. From Filippi & Guerra

ST T (7 SRR 200
Figure 10-46: Density, p, of FC 75 vs. temperature, T. From Filippi & Guerra (1977)

G OSSR 200
Figure 10-47: Specific heat, c,, of FC 75 vs. temperature, T. From Filippi & Guerra

(TOT7) [BA]..eeeeeeeeeeeeeeeee ettt e e sassssnsessssnsnnnnnnnnes 201
Figure 10-48: Thermal conductivity, k, of FC 75 vs. temperature, T. From Filippi &

GUEITA (1977) [B4]. ..ot e e e e e et a e e e e e e e eananes 201
Figure 10-49: Dynamic viscosity, u, of FC 75 vs. temperature, T. From Filippi & Guerra

(TOT7) [BA]. e eeeeeeeeeeeeeeee ettt eeeeesesnssssnnsnnnnnnnnnes 201

Figure 10-50: Thermal conductivity, k, of Methanol/Water Solutions vs. temperature, T.
Numbers on curves indicate Methanol mass fraction, ¢. From Vargaftik
(RS £ T < 2 ) PRSPPI 202

Figure 10-51: Dynamic viscosity, u, of Methanol/Water Solutions vs. temperature, T.
Numbers on curves indicate Methanol mass fraction, c. From Vargaftik

(TO75) [18 3. e eeeiiiiieiee ettt e e e s eessessnnnnnnnnnnnne 202
Figure 10-52: Vapor pressure, psa;, of Monsanto OS 59 vs. temperature, T. From Filippi

& GUEITA (TO77) [B4]. e 203
Figure 10-53: Density, p, of Monsanto OS 59 vs. temperature, T. From Filippi & Guerra

(TOT7) [B4]. oottt seessssssnssnsnsnnnnnnnnes 203
Figure 10-54: Specific heat, c¢,, of Monsanto OS 59 vs. temperature, T. From Filippi &

TN 4= T (R A4 TN 203
Figure 10-55: Thermal conductivity, k, of Monsanto OS 59 vs. temperature, T. From

Filippi & Guerra (1977) [64]. ...ceoeeeeee e 204
Figure 10-56: Dynamic viscosity, x, of Monsanto OS 59 vs. temperature, T. From Filippi

U=ty = T R A A TN 204
Figure 10-57: Density, p, of Air at a pressure of 10° Pa vs. temperature, T. From

Vargaftik (1975) [T183]. ... 212
Figure 10-58: Specific heat, c,, of Air vs. temperature, T. From Vargaftik (1975) [183]........ 212
Figure 10-59: Thermal conductivity, k, of Air vs. temperature, T. From Vargaftik (1975)
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Figure 10-60: Dynamic viscosity, x, of Air vs. temperature, T. From Vargaftik (1975)
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Figure 11-1: Typical regenerators. a) Rotary type. b) Valved type. From Kays & London

LS Lo T I 02 R 214
Figure 11-2: Typical recuperators. a) Counterflow heat exchanger. b) Crossflow heat

exchanger. From Welty, Wicks & Wilson (1969) [188]..........ccccvvvviiiiiiiieeeiinnns 215

Figure 11-3: Some typical examples of compact heat exchanger surfaces. From Kays
& London (1964) [102]. a) Circular tube bundle. b) Finned-circular-tube
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European Foreword

This document (CEN/CLC/TR 17603-31-13:2021) has been prepared by Technical Committee
CEN/CLC/JTC 5 “Space”, the secretariat of which is held by DIN.

It is highlighted that this technical report does not contain any requirement but only collection of data
or descriptions and guidelines about how to organize and perform the work in support of EN 16603-
31.

This Technical report (TR 17603-31-13:2021) originates from ECSS-E-HB-31-01 Part 13A .

Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. CEN [and/or CENELEC] shall not be held responsible for identifying any or all such
patent rights.

This document has been prepared under a mandate given to CEN by the European Commission and
the European Free Trade Association.

This document has been developed to cover specifically space systems and has therefore precedence
over any TR covering the same scope but with a wider domain of applicability (e.g.: aerospace).
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1
Scope

Fluid loops are used to control the temperature of sensitive components in spacecraft systems in order
to ensure that they can function correctly.

While there are several methods for thermal control (such as passive thermal insulations,

thermoelectric devices, phase change materials, heat pipes and short-term discharge systems), fluid
loops have a specific application area.

This Part 13 provides a detailed description of fluid loop systems for use in spacecraft.

The Thermal design handbook is published in 16 Parts

TR 17603-31-01
TR 17603-31-02
TR 17603-31-03
TR 17603-31-04
TR 17603-31-05

TR 17603-31-06
TR 17603-31-07
TR 17603-31-08
TR 17603-31-09
TR 17603-31-10
TR 17603-31-11
TR 17603-31-12
TR 17603-31-13
TR 17603-31-14
TR 17603-31-15
TR 17603-31-16

Thermal design handbook — Part 1: View factors

Thermal design handbook — Part 2: Holes, Grooves and Cavities
Thermal design handbook — Part 3: Spacecraft Surface Temperature
Thermal design handbook — Part 4: Conductive Heat Transfer

Thermal design handbook — Part 5: Structural Materials: Metallic and
Composite

Thermal design handbook — Part 6: Thermal Control Surfaces
Thermal design handbook — Part 7: Insulations

Thermal design handbook — Part 8: Heat Pipes

Thermal design handbook — Part 9: Radiators

Thermal design handbook — Part 10: Phase — Change Capacitors
Thermal design handbook — Part 11: Electrical Heating

Thermal design handbook — Part 12: Louvers

Thermal design handbook — Part 13: Fluid Loops

Thermal design handbook — Part 14: Cryogenic Cooling
Thermal design handbook — Part 15: Existing Satellites

Thermal design handbook — Part 16: Thermal Protection System
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