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showing the tensile ties used for supporting the helium tank. From Lizon-
Tati & Girard (1978) [134]. .. .ueeeeiieiiieiiiiiiieitiitett e aaeaaaaaanaananansnnnnnnnnes 174

Figure 6-32: CRHESUS heat flow diagram. From Lizon-Tati & Girard (1978) [134]. ........... 175
Figure 6-33: Composite column compressive support. From Heim & Fast (1973) [85]........ 176

Figure 6-34: Schematic of thermodynamic vent system. a) Forced convection. From
Mitchell et al. (1967). b) Pulsed constant pressure. From Mdller et al.

(GRS LS 2 ) T 4 P PEPRRR 182
Figure 6-35: Thermodynamic phase separator. From Fradkov & Troitskii (1975) [71]......... 183
Figure 6-36: A capillary barrier in static equilibrium. From McCarthy (1968) [144]. ............. 184

Figure 6-37: Container with a capillary-barrier partition. From McCarthy (1968) [144].
(a) An angular acceleration appears when the interface is formed at the
barrier. (b) The configuration reaches a steady angular velocity before
interaction of the interface with the barrier. See Table 6-12 for the definition
of the experimental conditioNS. ... 185

Figure 6-38: Results of barrier dynamic stability tests. Bond number-controlled mode.
Tests were insufficient for determining the effect on barrier stability of the
various dimensionless parameters. From McCarthy (1968) [144]. .................... 186

Figure 6-39: Results of dynamic stability tests with different barriers. Bond number-
controlled mode. The acceleration, g, is parallel to the barrier. From Fester
(1973) [67]. A Reynolds number through the hole has been plotted vs. the
critical Bond NUMDET ... ..o 187

Figure 6-40: Results of barrier dynamic stability tests. Weber number-controlled mode.
From McCarthy (1968) [144]. The Weber number in abscissae is
normalized with an analytical critical Weber number We., which is given in
Figure 6-41 DelOW. ..o 188

Figure 6-41: Critical Weber number, We., as a function of geometry, I/D, and position of
the axis of rotation, L/D. These results have been obtained by use of a
potential (incompressible, inviscid, irrotational flow) theory with O, — 1,
although assuming that the barrier induces a capillary pressure difference.
From GIUCK (1970) [76]. wevvreiiiieeei e 188
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Figure 6-42: Damping performance of selected barriers. From Fester (1973) [67]. The
damping categories A to G are associated to the flow patterns resulting
after impingement of the liquid with the barrier, from orderly (A) to irregular

() TP 189
Figure 6-43: Compartmented tank device. From Fester, Eberhardt & Tegart (1975) [68]....190
Figure 6-44: Sustained liquid height in a capillary tube. .............ccccoiiiii i, 190

Figure 6-45: Sustained ethanol height, /, vs. diameter of fiber, d,. Gravity level 40go.
From Enya, Kisaragi, Ochiai, Sasao & Kuriki (1981) [64].......cccoeeerriiiiiiiiineenn. 191

Figure 6-46: Sustained liquid height, /, vs. gravity level, g/g.. Liquids are: Ammonia
(circle), underfilled Ammonia (square), and ethanol (triangle). Matrix is
glass wool, d, = 10 m. Solid lines have been deduced from Eq. [6-91] with
6= 0 and the quoted values of d. From Enya, Kisaragi, Ochiai, Sasao and

KUFKi (T981) [B4]. ..o 192
Figure 6-47: Criterion for the onset of nucleation in subcooled boiling. After Collier

(G I T ) PSPPI 193
Figure 6-48: Post height, /, required to position a given ullage, U, under reduced

gravity. See Clause 6.4.5.2 for explanation of curves d/R =/0,Band C........... 194
Figure 6-49: Experimental glass tank with a standpipe. From Petrash, Nussle & Otto

(1963) [184]. All the dimensions are iN MM. ... 195
Figure 6-50: Minimum ullage centering capability of the standpipe..........cccccovviieeiiiinn, 196
Figure 6-51: Liquid acquisition by the standpipe for large ullages. From Petrash, Nussle

& OO (1983) [184]. .ottt a e e e 196
Figure 6-52: Central post with thin, off axis, posts (fingers). From Tegart et al. (1972)

(23] e 197
Figure 6-53: Criteria to deduce vane profile limits. From Tegart et al. (1972) [233]............. 198

Figure 6-54: Limiting vane profiles, Rmin/R and Rmax/R for n = 6, 8 and 12 vanes. Rniw/R
has been calculated for an ullage U = 0,05. Rmav/R is ullage-independent.
After Tegart et al. (1972) [233]. ...uuuunniiii e 199

Figure 6-55: Simplified bubble geometry. The bubble is held by two contiguous vanes
and shapes up as if it were held by the "effective" vane. From Tegart et al.
Q7 T 2 2 ) PSRRI 200

Figure 6-56: The ideal distorted axisymmetrical bubble. ..o 201

Figure 6-57: Angle 6, which measures the distortion of the bubble vs. ratio, Rs/R, of
inner body radius to tank radius. Calculated by the compiler. ........................... 202

Figure 6-58: Typical effective vane profiles, Ro/R, and dimensionless restoring force,
RAK, vs. displacement angle, 6. The Figure has been replotted by the
compiler after a representation in polar coordinates by Tegart et al. (1972)

Figure 6-59: Typical effective vane profiles, R/R, and dimensionless restoring force,
RAK, vs. displacement angle, 6. The vane profiles have been calculated by
Eq. [6-99] with the shown values of k and m. Forces have been deduced

from EQs. [6-96] 10 [6-98]......uuuuuiiiiii e 204
Figure 6-60: Bond length, L, as a function of T, for saturated Argon, Methane, Nitrogen

=0 @ ) g Yo =] o PO RPPPPRPRPIN 206
Figure 6-61: Bond length, Ly, as a function of T, for saturated Ethane, Carbon Dioxide

F= o 7N 010 4o |- TSRS 207
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Figure 6-62: Bond length, L, as a function of T, for saturated Hydrogen, Helium and

N O, 208
Figure 6-63: Relation between contact angle, ¢, and surface tension, o, for several

liquids on the quoted SUMfaCesS. ..........coiiiiiiiiie e 210
Figure 6-64: Sketch of a dual stage solid cooler. From Nast et al. (1976) [161]. ................. 218
Figure 6-65: Liquid helium (He*) coolers. a) Single stage. b) Dual stage. From Sherman

(= ) TN 72 L) 219
Figure 6-66: Normal attachment of the VCSs to the cooling duct through heat stationis.

From Glaser et al. (1967) [75]. ..oooeeeiiiiee 219
Figure 6-67: Tangential attachment of the cooling duct to the shields. Sketched by the

compiler after Hopkins & Chronic (1973) [94]. .....coooirmieee e, 220
Figure 6-68: Detector, T7, and optics, T, temperature vs. orbital time. ............................. 225
Figure 6-69: JPL-Caltech IR detector cooler arrangement. .................uuuuiiiiiiiiiiiiiiiiiiiiiiienns 227
Figure 6-70: Heat Flow diagram of the Ball Brothers Liquid helium Dewar. ........................ 232
Figure 7-1: Phase diagram for He* (not to scale). From Arp (1970) [10]. .......ccovvevvveinreennn. 234

Figure 7-2: Schematic of the apparatus used by the Leiden group to produce helium
flow through capillaries with independent variation of superfluid and normal
velocities. a) From Van der Heijden, Van der Boog & Kramers (1974) [247].
b) From De Haas & Van Beelen (1976) [55]. .....coooviiiiiiii, 242

Figure 7-3: The superfluid friction, LFs, vs. relative velocity, va-vs, for various runs with
psVstpnvn = Const. From van der Hejden, van der Boog & Kramers (1974)

Figure 7-4: The mutual friction, LFs,, vs. relative velocity, vi.-vs, from various constant
mass flux runs. From van der Hejden, van der Boog & Kramers (1974)

Figure 7-5: Mutual friction to superfluid friction ratio, Fs./Fs, vs. relative velocity, vq-vs,
from various runs with vs > 0 and v, > 0. From van der Heijden, van der
Boog & Kramers (1974) [247]....ccco oo 245

Figure 7-6: Isothermal and iso chemical-potential flows in the v, vs plane. The shaded
region corresponds to subcritical flow (44=0). From van der Heijden, van
der Boog & Kramers (1974) [247]. ..o oot a e 246

Figure 7-7: Correlations between the critical superfluid velocity, vsc1, and the tube

diameter, De. The experimental data have been re-plotted by the compiler

after van Alphen et al. (1969) [246]. They correspond to widely different

flow conditions. * Clow and Reppy, T,-T 50 x 102 K. @ Fokkens, film flow.

A Pellman, "superfluid wind tunnel". [J Chase, heat conduction T—T;; v,

— 0. A Van Alphen, adiabatic flow rate. O Van Alphen, energy dissipation
technique. ¥ Kramers, second sound attenuation in puresuperfluid flow. @

Van Alphen, critical flow through jeweller's rouge. V Keller and Hammel,
isothermal flow. e Data from reviews of Atkins, and Hammel and Keller. .......... 248

Figure 7-8: Schematic of pressure and temperature drop data as a function of heat flux....249

Figure 7-9: Schematic of L,"2Dg vs. vsDe under steady-state conditions. From Childers

& TOUGN (TO76) [A4]. .o 251
Figure 7-10: Critical Reynolds number for counterflow heat exchange, Re., as a
function of temperature, T. From Arp (1970) [10]...ccvvueeiieeeiiiceee e, 253
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Figure 7-11: Diagrams which relate the thermal gradient, d7/dx, to the heat flux, g, in
counterflow heat exchange. 7=1,5 K to 2 K. Calculated by the compiler
after Arp (1970) [10]. cuueee e e et e e e e e eeaanes 254

Figure 7-12: Temperature profile along a channel filled with He Il at atmospheric
pressure in conterflow heat exchange. From Bon Mardion, Claudet &

Seyfert (1979) [26]. ...ooooeiiiie e 256
Figure 7-13: Tube and He Il bath arrangement...................euuuiiiiiiiiiiiiiiiiees 258
Figure 7-14: Film and bulk liquid configuration .....................eeeiiiiiiiiiiiiiiiiiieees 259

Figure 7-15: Bernoulli thinning. The full line corresponds to Eq. [7-46]. The dotted line
is the Kontorovich (1956) [125] solution. Neither solution gives the correct
transition of the film interface to the horizontal free surface in the reservoir,
because capillary pressure has been neglected. Curves labelled with the
values of Bo correspond t0 EqQ. [7-49]. ..ouueeiiiiiiiicee e, 262

Figure 7-16: Cell used to perform reduced-gravity test. The film thickness experiments
were performed in the left hand side compartment. From Yang & Mason
(1980) [268].....eeeeeeeeeeeeeeeeeiete et e e e e e e e et e e e e e e e e e s e e e aaaeeaaaansnreeeaaeeeeaannnnnnnes 267

Figure 7-17: Kapitza conductance, hi, of low Debye temperature metals, Mercury,
Lead, Gold and Silver in contact with Liquid Helium, vs. temperature, T.
See Table 7-2 DEIOW.........coeiiiiiiieeeeeeeeeeeeeeeeeeeeeeeee e 273

Figure 7-18: Kapitza conductance, hx, of Copper in contact with various low acoustic
impedance materials vs. temperature, T. See Table 7-2 and Table 7-41
below. Theoretical results are also shown in this figure. ..............cccciieen 274

Figure 7-19: Kapitza conductance, hi, of Tungsten, Aluminium, Molybdenum and
Beryllium, in contact with Liquid Helium, vs. temperature, T. See Table 7-2

DEIOW. .o s 275
Figure 7-20: Kapitza conductance, hi, of Nonmetals in contact with Liquid helium vs.
temperature T. See Table 7-32 belOW. ......ccooviiiiiiiiiicci e, 275

Figure 7-21: The neutral stability curve for Taconis oscillations when £=1. O Dg =24
x103m, Th=288K; @De=24x103m, Th=773K;L0De=4,4x10"3
m, Ty=288 KM De=4,4x10°m, Ty = 77,3 K From Yazaki, Tominaga &

Narahara (1979) [269]. .....ccoe i 304
Figure 7-22: Device for preventing Taconis oscillations. All the dimensions are in mm.

From Hilal & McIntosh (1976) [88]. ......ccooeiiiiiii 305
Figure 7-23: Superfluid plug arrangement. The intake face of the plug is located at x =

O PP PPPP RO PPPPPPPPRPT 306

Figure 7-24: Backward pressure, p2, as a function of mass flow rate, m, through the
plug. Experimental points are from smooth curves by Karr & Urban (1978,
1980) [113] & [114]. The curve shown in the figure and the Reynolds
number in the abscissae axis correspond to turbulent flow (neglecting
entrance effects, see ECSS-E-HB-31-01 Part 13 clause 7.2.5) in a straight
tube of circular cross-section, under the validity of Blasius formula, for the

data shown in the insert. Calculated by the compiler. .............cccccoiiiiiiiiiinnnnns 312
Figure 7-25: Quadrangle of data required in porous plug performance evaluation.............. 313
Figure 7-26: Mass flow rate, m, vs. pressure drop, p-p, for slits of various lengths, t,

and two different bath temperatures, Ti. From Denner et al. (1980) [56]. .......... 324
Figure 7-27: Active Phase Separator (APS). From Denner et al. (1982) [57]. ....cceeeeeeereenne. 325
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Figure 7-28: Three typical positions of the liquid-vapor interface. a) Ideal flow
separation. b) Choking. c) Gorter-Mellink flow. From Schotto (1984) [209]....... 327

Figure 7-29: Temperature distribution within a 4 x 10 m thick. Ceramic plug for several
pressure differences. p. = 2,55 x 10 Pa in any case. From Elsner (1973)

Figure 7-30: Time constant, b, as a function of heating power, Q, for the plug described
by Karr & Urban (1978,1980) [113] & [114] in clause 7.4.2.6. Position of the
heaters, H, is also shown in the figure. White circle: upstream heater
power-on; blackcircle: upstream heater power-off; white square: heater at
the plug exit power-on; black square: heater at the plug exit, power-off.
From Karr & Urban (1978,1980) [113] & [114]. There is no consistent
difference between power-on and power-off............ccooviiieii i 329

Figure 7-31: Fraction, f, of liquid mass lost because of pump down vs. final
temperature, T Curves labelled REVERSIBLE correspond to Egs. [7-80]
and [7-81] respectively. Experimental results are also shown. From Nicol &
BOhm (1960) [168]. ...eeee it e e ettt e e a e e e e e s e e e e e e e e e e ennnnnees 339

Figure 7-32: Mass flow rate, m/p, required for a refrigerating load of 102 W as a
function of final temperature, T, under three different situations. (a) Liquid
He* is continuously supplied at 4,2 K for evaporation. (b) No supply of He*.
(c) Liquid He?® is continuously supplied at 3,2 K for evaporation. From Nicol
& BONM (1960) [168]. ..oeeee e e e e et e e et e e e e e e e e e e e e e e e e nnnnrnees 340

Figure 7-33: Superfluid helium filling assembly. Explanation: NV1 to NV4, ruby needle
valve; NV5, standard needle valve; V1, remote controlled QSB for flap
valve; V2 to V8, standard valves; F1 and F2, external fittings to maintain
cleanliness; T1, 120° flexible transfer tube continuous with filling cryostat
and having a 4,2 K radiation shield; T2, long flexible transfer tube for filling
4,2 K tank; R1, 4,2 K reservoir and header tank; R2, 1,5 K reservoir. (NV2
is the porous plug seal. NV3 is the gas vent hole seal). From OXFORD

INSTRUMENTS (1976) [176]. .o 341
Figure 8-1: Density, p, of Saturated Liquid Argon vs. temperature, T. From Johnson

(T9B1) [T09]. e eiiiiiiiiie ettt ettt e et e e e e e e e e e e e e e e e e e e aeaeaeeeees 348
Figure 8-2: Density, p, of Saturated Solid Argon vs. temperature, T. From Johnson

(T9B1) [T09]. e eiiiiiiiiieeeee ettt e e e e et e e e e e e e e e e e e e aeeaeaeeeees 349
Figure 8-3: Density, p, of Saturated Liquid Methane vs. temperature, T. From Johnson

(S L0 I TN 0 PP 349
Figure 8-4: Density, p, of Saturated Solid Methane vs. temperature, T. From Johnson

(S L0 I TN 0 350
Figure 8-5: Density, p, of Saturated Liquid Ethane vs. temperature, T. From Johnson

(£ TN L4 350
Figure 8-6: Density, p, of Saturated Liquid Carbon Dioxide vs. temperature, T. From

LEFAX 130 i 351
Figure 8-7: Density, p, of Saturated Solid Carbon Dioxide vs. temperature, T. From

LEFAX 130 i 351
Figure 8-8: Density, p, of Saturated Liquid Hydrogen vs. temperature, T. From Vargaftik

(T N A3 ) PRSPPI 352
Figure 8-9: Density, p, of Saturated Liquid Helium-4 vs. temperature, T. From Johnson

(1961) [100]. et e e e e e e e e e e e e e e a e e e e 352
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Figure 8-10: Density, p, of Saturated Solid Helium-4 vs. temperature, T. From Johnson

(S L I TN 0 PP 353
Figure 8-11: Density, p, of Saturated Liquid Helium-3 vs. temperature, T. From Keller

(L3S TN I PP 353
Figure 8-12: Density, p, of Saturated Liquid Helium-3 -along the freezing curve- vs.

temperature, T. From Keller (1969) [119]. .....uuuiiiii e 354
Figure 8-13: Density, p, of Saturated Solid Helium-3 vs. temperature, T. From Keller

(L3 TN 354

Figure 8-14: Density, p, of Solid Helium-3 vs. temperature, T. Values of p are shown
along the melting curve as well as along curves of constant isobaric
compressibility. hcp and bcce stand for hexagonal-close-packed and body-
centered-cubic phases of Solid Helium-3, respectively. From Straty (1966)
[228]. Additional data for a wider temperature range are given in Figure

Figure 8-15: Density, p, of Solid Helium-3 vs. temperature, T, along the melting-
freezing curve. Since Helium-3 samples were contaminated with around 0,2
% of Helium-4, two freezing curves appear. The figure also reveals the
existence of another solid phase, cubic-close-packed (ccp), at high

pressures. From Sample (1966) [205]. ......ccooormiiiieeiiieeceee e 356
Figure 8-16: Density, p, of Saturated Liquid Nitrogen vs. temperature, T. From Johnson

(T9B1) [T09]. e eiiiieiiiieeeee ettt e e e e e e e e e e e e e e e e e e e aaaaeeeees 356
Figure 8-17: Density, p, of Saturated Solid Nitrogen vs. temperature, T. From Johnson

(T9B1) [T09]. ettt e e e e e e e e e e e e e e e e e e e e aaeaaeeees 357
Figure 8-18: Density, p, of Saturated Liquid Ammonia vs. temperature, T. From

Vargaftik (1975) [253]. .. .uuuuuueii s nssnnnnnnnes 357
Figure 8-19: Density, p, of Saturated Liquid Neon vs. temperature, T. From Johnson

(S L0 I TN 0 PP 358
Figure 8-20: Density, p, of Saturated Solid Neon vs. temperature, T. From Johnson

(S L0 I TN 0 PP 358
Figure 8-21: Density, p, of Saturated Liquid Oxygen vs. temperature, T. From Johnson

(S L0 I TN 0 PP 359

Figure 8-22: Specific heat, ¢, of several gases vs. temperature, T. Sources of data,
and pressures are: Ar, CO2, Hz, N2 and O», from Hilsenrath et al. (1960)
[90], 1 atm. CH. and Ne, from Johnson (1961) [109], 1 atm. C,Hs from
Vargaftik (1975) [253], 105 Pa. He* from Angus & de Reuck (1977) [6], 10°
Pa. NH; from Norris et al. (1967) [171], 1 atm. 1 atm = 1,0135x10° Pa. ......... 359

Figure 8-23: Specific heat, ¢,, of Gaseous Helium-3 vs. the deviation | T-T.| from

critical temperature, T, along nearly critical isochores. T< T,.O

Experimental. mmc, = R[2,7-3,7In((Tc-T)/T)] T> T, .0 Experimental.
Cp = R[0,5-3,7In((T-T¢)/Tc)] From Keller (1969) [119]. T. = 3-324 K,
R=RM R =28,31432 J.mol"".K" M =3,01603x103 kg.mol™". ..........c....cc...... 360

Figure 8-24: Specific heat, ¢,, of Liquid Helium-3, vs. temperature, T, at several
pressures. a) is for p = psa, and the shazed zone is enlarged in b). Data in
b) are for the following pressures Op = P sat ; s p = psat Lo = 14,9x105
Pa. p=117x10° Pa. Ap =28,3x10° Pa. mm == p = 27x10° Pa.
Data points are from Strongin et al. (1963) [230] and curves from Keller
(1969) 119 it e e e e e e e e e e e e e e e st eaaaaeeeeannnsnnes 361
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Figure 8-25: Specific heat, ¢, of Solid Helium-4 (dashed line) and Solid Helium-3 (full
lines), vs. temperature, T. Numbers on the curves are densities in kg.m=.

From Sample (1966) [205]. ....coeeeeieeiiieee e 362
Figure 8-26: Heat of conversion, h, from Normal to Para Hydrogen vs. temperature, T.

From Johnson (1961) [109]. ...cooriiiiii e 363
Figure 8-27: Heat of vaporization, hz, of Saturated Liquid Argon vs. temperature, T.

From Vargaftik (1975) [253].....ccco it 363
Figure 8-28: Heat of vaporization, hy, of Saturated Liquid Methane vs. temperature, T.

From Vargaftik (1975) [253].....ccooeeeeeeeeeeee 364
Figure 8-29: Heat of vaporization, hy, of Saturated Liquid Ethane vs. temperature, T.

From Vargaftik (1975) [253]......ccoiiiieie e 364
Figure 8-30: Heat of vaporization, hs, of Saturated Liquid Carbon Dioxide vs.

temperature, T. From Angus, Armstrong & de Reuck (1976) [5]..........cccccuvennee 364
Figure 8-31: Heat of vaporization, hy, of Saturated Liquid Normal Hydrogen vs.

temperature, T. From Johnson (1961) [109]. .......oovviiiiiiieecee e, 365
Figure 8-32: Heat of vaporization, hz, of Saturated Liquid Helium-4 vs. temperature, T.

From Angus & de Reuck (1977) [6]. ..vuueeeeieeiiiiicee e 365
Figure 8-33: Heat of vaporization, hy, of Saturated Liquid Helium-3 vs. temperature, T.

From Keller (1969)[119]. ...cooiiiiiiieeee e, 366
Figure 8-34: Heat of vaporization, hy, of Saturated Liquid Nitrogen vs. temperature, T.

From Johnson (1961) [109]. .....coiiiiiieee e 366
Figure 8-35: Heat of vaporization, hz, of Saturated Liquid Ammonia vs. temperature, T.

From Vargaftik (1975) [253].....ccooeieeieeee 366
Figure 8-36: Heat of vaporization, hy, of Saturated Liquid Neon vs. temperature, T.

From Johnson (1961) [109]. ..coeeeiei e 367
Figure 8-37: Heat of vaporization, hs, of Saturated Liquid Oxygen vs. temperature, T.

From Johnson (1961) [109]. ...ooeeieieeeeeeee e 367

Figure 8-38: Heat of sublimation, hz, of several solid cryogens vs. temperature, T. T is
bounded from above by the triple point and from below by a vapor pressure

of 1,33 Pa. From Nast, Barnes & Wedel (1976) [161]..........uuveiiimiiiiiiiiiiiiiiiinnnns 368
Figure 8-39: Vapor pressure, psat, of Liquid Argon vs. temperature, T. From Hilsenrath

€1 Al (1960) [90]. .urrrruurrrrereeerirtueettsuaesttassesaaaaasssssssssssaassssssssnsssssssssnssnsnnnnsnnnnnnnnns 369
Figure 8-40: Vapor pressure, psat, of Solid Argon vs. temperature, T. From Hilsenrath et

= I 1010 ) TN S0 S 369
Figure 8-41: Vapor pressure, psat, of Liquid Methane vs. temperature, T. From Johnson

(T9B1) [T09]. ittt e e e e e e e e e e e e e e e e e aeaaeaees 370
Figure 8-42: Vapor pressure, psat, of Solid Methane vs. temperature, T. From Johnson

(S L0 I TN 0 370
Figure 8-43: Vapor pressure, psat, of Liquid Ethane vs. temperature, T. From Vargaftik

(R A) A3 ) PSPPI 371
Figure 8-44: Vapor pressure, psat, of Liquid Carbon Dioxide vs. temperature, T. From

Hilsenrath et al. (1960) [90]. .....ooieiiiie e 371
Figure 8-45: Vapor pressure, psat, of Solid Carbon Dioxide vs. temperature, T. From

Caren & Coston (1968) [B6]......cvuviiiiiieiiiiiiiiiiieeeeee ettt e e eeeeees 372
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Figure 8-46: Vapor pressure, psat, of Liquid Hydrogen vs. temperature, T. From

Vargaftik (1975) [253]. . oo oo 372
Figure 8-47: Vapor pressure, psa, of Solid Hydrogen vs. temperature, T. From Johnson

(S L2 I TN 0 PP 373
Figure 8-48: Vapor pressure, psat, of Liquid Helium-4 vs. temperature, T. From Angus &

Lo L= TN (o [ (e A4 T ) 373
Figure 8-49: Vapor pressure, psat, of Liquid Helium-3 vs. temperature, T. From

Mendelssohn (1960) [148]. ..o 374
Figure 8-50: Vapor pressure, psat, of Liquid Nitrogen vs. temperature, T. From Johnson

(S L I TN 0 374
Figure 8-51: Vapor pressure, psat, of Solid Nitrogen vs. temperature, T. From Johnson

(S L2 I TN 0 PP 375
Figure 8-52: Vapor pressure, psat, of Liquid Ammonia vs. temperature, T. From

Vargaftik (1975) [253]. .. .uuuuuuueii e aasannnssnnnnnnnes 375
Figure 8-53: Vapor pressure, psa, of Solid Ammonia vs. temperature, T. From

Kutateladze & Borishankii (1966) [127]. ....ccoovvviiiieeee e 376
Figure 8-54: Vapor pressure, psat, of Liquid Neon vs. temperature, T. From Johnson

(T9B1) [T09]. ittt ettt e e e e e e e e e e e e e e e e e e aaaaaeeaees 376
Figure 8-55: Vapor pressure, psat, of Solid Neon vs. temperature, T. From Johnson

(S L2 I TN 0 PP 377
Figure 8-56: Vapor pressure, psat, of Liquid Oxygen vs. temperature, T. From Johnson
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European Foreword

This document (CEN/CLC/TR 17603-31-14:2021) has been prepared by Technical Committee
CEN/CLC/JTC 5 “Space”, the secretariat of which is held by DIN.

It is highlighted that this technical report does not contain any requirement but only collection of data
or descriptions and guidelines about how to organize and perform the work in support of EN 16603-
31.

This Technical report (TR 17603-31-14:2021) originates from ECSS-E-HB-31-01 Part 14A.

Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. CEN [and/or CENELEC] shall not be held responsible for identifying any or all such
patent rights.

This document has been prepared under a mandate given to CEN by the European Commission and
the European Free Trade Association.

This document has been developed to cover specifically space systems and has therefore precedence
over any TR covering the same scope but with a wider domain of applicability (e.g.: aerospace).
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1
Scope

In this Part 14 cooling methods below 100 K are described. These low temperature levels are mainly
required by space borne electronic systems operating under very low noise conditions. Details on the
materials used and safety factors are given.

The Thermal design handbook is published in 16 Parts
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Thermal design handbook — Part 3: Spacecraft Surface Temperature
Thermal design handbook — Part 4: Conductive Heat Transfer

Thermal design handbook — Part 5: Structural Materials: Metallic and
Composite

Thermal design handbook — Part 6: Thermal Control Surfaces
Thermal design handbook — Part 7: Insulations

Thermal design handbook — Part 8: Heat Pipes

Thermal design handbook — Part 9: Radiators

Thermal design handbook — Part 10: Phase — Change Capacitors
Thermal design handbook — Part 11: Electrical Heating

Thermal design handbook — Part 12: Louvers

Thermal design handbook — Part 13: Fluid Loops

Thermal design handbook — Part 14: Cryogenic Cooling
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Thermal design handbook — Part 16: Thermal Protection System
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