TNI	Kozmická technika Príručka pre tepelnotechnický návrh Časť 15: Existujúce satelity	TNI CEN/CLC/TR 17603-31-15
		31 0540

Space Engineering - Thermal design handbook - Part 15: Existing Satellites

Táto technická normalizačná informácia obsahuje anglickú verziu CEN/CLC/TR 17603-31-15:2021. This Technical standard information includes the English version of CEN/CLC/TR 17603-31-15:2021.

Táto technická normalizačná informácia bola oznámená vo Vestníku ÚNMS SR č. 12/21

134179

Úrad pre normalizáciu, metrológiu a skúšobníctvo Slovenskej republiky, 2022 Slovenská technická norma a technická normalizačná informácia je chránená zákonom č. 60/2018 Z. z. o technickej normalizácii.

TECHNICAL REPORT RAPPORT TECHNIQUE TECHNISCHER BERICHT

CEN/CLC/TR 17603-31-15

August 2021

ICS 49.140

English version

Space Engineering - Thermal design handbook - Part 15: **Existing Satellites**

Ingénierie spatiale - Manuel de conception thermique -Partie 15 : Véhicules spatiaux existants

Raumfahrttechnik - Handbuch für thermisches Design -Teil 15: Existierende Satelliten

This Technical Report was corrected and reissued by the CEN-CENELEC Management Centre on 18 August 2021

This Technical Report was approved by CEN on 28 June 2021. It has been drawn up by the Technical Committee CEN/CLC/JTC 5.

CEN and CENELEC members are the national standards bodies and national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom.

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels

© 2021 CEN/CENELEC All rights of exploitation in any form and by any means reserved worldwide for CEN national Members and for **CENELEC** Members.

Ref. No. CEN/CLC/TR 17603-31-15:2021 E

TNI CEN/CLC/TR 17603-31-15: 2022

CEN/CLC/TR 17603-31-15:2021 (E)

Table of contents

European Foreword9		
1 Scop	De	10
2 Refe	rences	11
3 Term	ns, definitions and symbols	12
3.1	Terms and definitions	12
3.2	Abbreviated terms	12
3.3	Symbols	17
4 Inter	national ultraviolet explorer (IUE)	18
4.1	Mission	18
4.2	Main subsystems	18
4.3	Main characteristics of the satellite	20
4.4	Orbit	21
4.5	Thermal design requirements	22
4.6	Design tradeoffs	24
4.7	Thermal control of various components	24
4.8	Estimated on orbit performance	25
5 Orbi	tal test satellite (OTS)	29
5.1	Mission	29
5.2	Main subsystems	29
5.3	Main characteristics of the satellite	32
5.4	Orbit	35
5.5	Thermal design requirements	35
5.6	Design tradeoffs	36
5.7	Thermal control of various components	36
5.8	Estimated on orbit performance	42
5.9	Measured in orbit performance	42
6 Lanc	lsat D	49
6.1	Mission	49
6.2	Main subsystems	49

6.3	Main characteristics of the satellite:		
6.4	Orbit		51
6.5	Therma	design requirements	51
6.6	Design t	radeoffs	52
6.7	Therma	control of various components	52
6.8	Estimate	ed on orbit performance	54
6.9	Verificat	ion	56
6.10	Measure	ed on orbit performance	57
7 Infra	red astr	onomical satellite (IRAS)	58
7.1	Mission		58
7.2	Main su	bsystems	58
7.3	Spaceci	aft main characteristics	60
7.4	Orbit		61
7.5	Therma	design requirements	62
7.6	Design	constraints	63
7.7	Therma	control of various components	64
7.8	Test of t	he spacecraft system	67
7.9	Test of t	he superfluid Helium Dewar	68
	7.9.1	General	68
	7.9.2	Test of the plug	69
	7.9.3	Prelaunch preparations	70
7.10	On orbit	performance of the spacecraft	71
7.11	On orbit	performance of the cryogenic system	72
8 Satel	lite prol	patoire d'observation de la terre (SPOT)	76
8.1	Mission		76
8.2	Main su	bsystems	76
8.3	Main ch	aracteristics of the satellite	77
8.4	Orbit		80
8.5	Therma	design requirements	80
	8.5.1	Functional modes	80
	8.5.2	Orbital constraints	80
	8.5.3	Limiting temperatures	81
	8.5.4	Thermal interfaces	83
8.6	Design t	radeoffs	
8.7	Therma	control of various components	84
	8.7.1	Platform	84
	8.7.2	Batteries compartment	85

		8.7.3	High-resolution visible range instruments	87
		8.7.4	Payload telemetry system	90
	8.8	Estimate	ed on-orbit performance	92
		8.8.1	Platform	92
		8.8.2	Batteries compartment	93
		8.8.3	High-resolution visible range instrument	95
		8.8.4	Payload telemetry system	95
9	Olym	pus-1		97
	9.1	Mission		97
	9.2	Main su	bsystems	97
	9.3	Orbit		102
	9.4	Therma	I design requirements	102
	9.5	Therma	I control	102
	9.6	Therma	l test of olympus-1	105
		9.6.1	Thermal vacuum test	106
		9.6.2	Infrared test	109
1() ERS	6-1		114
	10.1	Mission		114
	10.2	Main su	bsystems	115
	10.3	Orbit		119
	10.4	Thermal	I design requirements	119
	10.5	Therma	I control	122
	10.6	Therma	I tests	126
		10.6.1	Thermal balance test of the engineering model	126
		10.6.2	Thermal vacuum test	132
В	ibliog	raphy		133
	_			

Figures

Figure 4-1: IUE spacecraft in orbital flight	18
Figure 4-2: Exploded view of the IUE spacecraft.	20
Figure 4-3: IUE orientation to the Sun and reference axes.	22
Figure 4-4: Assembled IUE Spacecraft. From Skladany & Seivold (1976) [42]. Notice that this figure, which corresponds to an earlier development, differs from Figure 4-1 in minor details.	23
Figure 4-5: IUE main equipment platform. From Skladany & Seivold (1976) [42]	24
Figure 5-1: OTS mission event sequence. From Collette & Stockwell (1976) [14]	29

Figure 5-2:	Exploded view of the OTS spacecraft. From Bouchez, Howle & Stümpel (1978) [9]	.33
Figure 5-3:	OTS main organic diagram. From Collette & Stockwell (1976) [14]	.34
Figure 5-4:	OTS Thermal Control Subsystem temperature limits. From Stümpel (1978)a [45]	.35
Figure 5-5:	OTS thermal control layout summary. From Stümpel (1978)a [45]	.39
Figure 5-6:	Insulation in the OTS hydrazine line system. From Stümpel (1978)a [45]	.39
Figure 5-7:	OTS heater switching diagram.	.40
Figure 5-8:	Thermal insulation of the hydrazine tank. The tank is totally covered with low emittance tape. Heaters are of the foil type (see ECSS-E-HB-31-01 Part 11, clause 4.2). The tank contacts the platform via a low conductance amount. From Stümpel (1978)b [46]	.40
Figure 5-9:	Thermal decoupling of FCV from TCA onboard OTS. The heat barrier maintains temperature differences up to 800 K via a length of 0,03 m	.41
Figure 5-10	D: Histograms for ground and first orbit test. From Bouchez & Gülpen (1980) [5]. The ordinates show the number of samples the temperature deviation of which stays within the limits shown in abscissae. ($\Delta T = T_{measured} - T_{predicted}$)	.43
Figure 5-11	: Histograms for orbit tests during different summer solstices. Data for 1978 and 1980 are from Bouchez & Gülpen (1981) [5] and those for 1981 from Bouchez & Howle (1982) [7]	.44
Figure 5-12	2: Temperature increases ΔT as a function of time, <i>t</i> elapsed since Jan 1, 1978. From Chalmers, Konzok, Bouchez & Howlw (1983) [13]. Circle: Summer Solstice test points. Square: Winter Solstice test points. Triangle: Equinox test points.	.46
Figure 5-13	B: Mean solar absorptance, α_s , on antenna dish white S-13 G/LO paint. From Chalmers, Konzok, Bouchez & Howle (1983) [13]. Circle: Summer Solstice test points. Square: Winter Solstice test points. Triangle: Equinox test points.	.48
Figure 6-1:	Landsat spacecraft in orbital flight.	.49
Figure 6-2:	Exploded view of the Landsat D spacecraft before deployment	.50
Figure 6-3:	Assembled Wide Band Module	.53
Figure 6-4:	Thermal Control coatings used on Landsat D	.54
Figure 7-1:	IRAS spacecraft in orbital flight. See also Table 7-1. From Van Leeuwen (1983) [53]	.58
Figure 7-2:	IRAS telescope subsystem. From Urbach et al. (1982) [52]	.61
Figure 7-3:	IRAS attitude constraints during mission. From Van Leeuwen (1983) [53]	.63
Figure 7-4:	IRAS spacecraft thermal control layout summary. From Van Leewen (1983, 1985) [53] & [54]	.65
Figure 7-5:	IRAS Telescope thermal control layout summary. From Urbach et al. (1982) [52] and Sherman (1982) [41]	.67
Figure 7-6:	IRAS Test Configuration. a. Thermal model. b. Complete satellite in JPL facility. From Van Leeuwen (1983) [53].	.67
Figure 7-7:	Effect of Critical parameters on heat load to cryogen. From Urbach, Hopkins & Mason (1983) [50]	.69

Figure 7-8:	Tilting of the MCT for porous plug submersion. From Petrac & Mason (1984) [39]	70
Figure 7-9:	Vapor mass flow rate, m , and heat transfer rate, Q, through the plug vs. pressure drop, Δp . From Petrac & Mason (1984) [39]	70
Figure 7-10): Histogram for ground and orbit test just after launching. The temperature deviation is $\Delta T = T_{measured} - T_{predicted}$. From Van Leeuwen (1983) [53]	71
Figure 7-11	1: FSSS temperature, <i>T</i> , as a function of time, <i>t</i> , elapsed after launch. From Van Leeuwen (1983) [53]. A thermal misalignment phenomenon, occurred during the experimental phase of the mission, has been reported by Karsten & Teule (1984) [31]. This phenomenon, which was adequately modelled and partially overcome, was responsible for the development of cross-scan attitude errors of up to 100 arcsec. The origins of the misalignment changes could be traced to both spacecraft structure and FSSS brackets.	72
Figure 7-12	2: Cryogenic System Equilibrium Temperatures. From Urbach & Mason (1984) [51]	74
Figure 7-13	3: Cryogenic boil-off rate according to different models. From Urbach, Hopkings & Mason (1983) [50]	75
Figure 8-1:	SPOT 1 spacecraft in orbital flight	76
Figure 8-2:	Exploded view of the SPOT 1 subsystems and components which require thermal control. Drawn by the compiler after Alet & Foret (1983) [1], Fagnoni (1983) [20], Courtois & Weill (1985) [16]. Encircled numbers in the figure are the same as those of the clauses in the text	34
Figure 8-3:	Battery assembly of the SPOT multimission platform. From Fagnoni (1983) [20]	36
Figure 8-4:	Exploded view of the HRVs. From Mauduyt, Bonnet & Toulemont (1983) [34]	37
Figure 8-5:	Design hot mission profile for HRV and TMCU. From Racaud, d'Antin & Lelièvret (1983) [40].	38
Figure 8-6:	Thermal control layout summary of the HRV. From Mauduyt, Bonnet & Toulemont (1983) [34]) 0
Figure 8-7:	SPOT 1 Satellite as seen from the -Z side. From Racaud et al. (1983) [40]) 1
Figure 8-8:	Temperature limits of the SPOT 1 platform components. From Alet & Foret (1983) [1]	93
Figure 8-9:	Test configuration of the batteries compartment of the SPOT multimission platform. From Fanoni (1983) [20]	94
Figure 9-1:	Olympus-1 in orbital flight. From Bonhomme & Steels (1984) [4], Steels & Baston (1986) [44]	97
Figure 9-2:	Exploded view of Olympus-1 satellite. From ESA (1984), Bowles (1987) [10], Paul (1989) [38]	98
Figure 9-3:	Schematic of the different phases of the Olympus-1 solar array deployment. Prepared by the compiler after Bonhome & Steels (1984) [4], Bowles (1987) [10]	00
Figure 9-4:	Olympus-1 satellite thermal control layout used for thermal vacuum tests. From Boggiatto, Colizzi, Perotto & Tavera (1985) [3]. Explanation is given in Table 9-3)3

Figure 9-5:	Olympus-1 satellite battery thermal control layout. a) Ni-Cd battery; b) Ni-H ₂ battery. From Konzok, Gutschmidt, Stümpel, Schlitt & Dunbar (1987) [33]1	05
Figure 9-6:	Temperature Difference Histograms for the three test cases considered in the Thermal Vacuum Tests of Olympus-1 satellite (see Table 9-6 above). From Boggiatto, Colizzi, Perotto & Tavera (1985) [3]1	109
Figure 9-7:	Infrared test related activities. From Messidoro & Colizzi (1986) [37]1	11
Figure 9-8:	Temperature vs. time profiles of Olympus-1 satellite as obtained from the infrared test North radiator, inner face South radiator, outer face Communications Module – Service Module, central cylinder Communications Module, upper floor. From Messidoro & Colizzi (1986) [37]1	113
Figure 10-1	ERS-1 in flight configuration. From Francis et al. (1991) [21]1	15
Figure 10-2	2: Exploded view of ERS-1 satellite. From Francis et al. (1991) [21]1	16
Figure 10-3	3: Schematic of the different phases of ERS-1 SAR Antenna deployment. From Francis et al. (1991) [21]1	23
Figure 10-4	I: ERS-1 satellite. PEM external thermal design. From Haimler, Overbosch & Pieper (1987) [24]1	24
Figure 10-5	5: ERS-1 satellite. PEM internal thermal design. From Haimler, Overbosch & Pieper (1987) [24]1	25
Figure 10-6	6: Temperature difference histograms for the PL-Off Phase. From Haimler, Kamp & Pieper (1990)1	31
Figure 10-7	7: Transient temperature behaviour of IDHT TWT's: a) Predicted, b) measured. From Haimler, Kamp & Pieper (1990)1	31

Tables

Table 4-1: Characteristics of the IUE Main Subsystems	19
Table 4-2: IUE Flight Segment Mass Summary	21
Table 4-3: Thermal Design Requirements	23
Table 4-4: Estimated and Measured Performance of Spacecraft Components and Scientific Instrument Components with Nominal Power Dissipation	26
Table 5-1: Characteristics of the OTS main Subsystems	30
Table 5-2: OTS Mass Summary	33
Table 5-3: Sensor Distribution	42
Table 5-4: In Orbit Measured Values and Curve Fitting Values	45
Table 5-5: Change in Solar Absorptance, $\Delta \alpha_s$, of OSR vs. Exposure Time as Deduced from OTS Solstice Data	47
Table 6-1: Landsat D Flight Segment Mass Summary	51
Table 6-2: Thermal Design Requirements	52
Table 6-3: Estimated on Orbit Performance of the Instrument Module Components	55
Table 7-1: IRAS Main Subsystems	59
Table 7-2: Thermal Design Requirements	62
Table 7-3: Cryogenic System performance Summary	72

Table 8-1: Characteristics of the SPOT 1 Main Subsystems	77
Table 8-2: SPOT 1 Mass Summary	79
Table 8-3: Limiting Temperatures and Heat Dissipation Rates of Typical Components – SPOT 1 Satellite	.81
Table 8-4: Estimated and Measured Performance of the SPOT Multimission Platform Batteries Compartment (<i>T</i> in K)	.94
Table 9-1: Olympus-1 Main Subsystems	99
Table 9-2: Olympus Payload1	00
Table 9-3: Payload Subsystems Identification in Figure 9-41	03
Table 9-4: Olympus-1 Battery Performance Characteristics1	04
Table 9-5: Olympus-1 Thermal Test1	05
Table 9-6: Representative Cases Considered in the Thermal Test1	06
Table 9-7: Subsystem Temperature [K] after Different Steps in the Test-Mathematical Model Interaction1	08
Table 9-8: Winter Solstice Heat Transfer Rates, Qe[W.m ⁻²], Measured and Compared with the Requirements1	12
Table 10-1: Payload Main Subsystems1	17
Table 10-2: Typical Design Temperature Limits and PEM Dissipations1	20
Table 10-3: ERS-1 Thermal Test1	26
Table 10-4: Thermal Balance Test Phases. From Haimler, Kamp and Pieper (1990)1	28
Table 10-5: Final Level Correlation Status. Average Measured Predicted Deviation for Steady State Case 1	32

European Foreword

This document (CEN/CLC/TR 17603-31-15:2021) has been prepared by Technical Committee CEN/CLC/JTC 5 "Space", the secretariat of which is held by DIN.

It is highlighted that this technical report does not contain any requirement but only collection of data or descriptions and guidelines about how to organize and perform the work in support of EN 16603-31.

This Technical report (TR 17603-31-15:2021) originates from ECSS-E-HB-31-01 Part 15A.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN [and/or CENELEC] shall not be held responsible for identifying any or all such patent rights.

This document has been prepared under a mandate given to CEN by the European Commission and the European Free Trade Association.

This document has been developed to cover specifically space systems and has therefore precedence over any TR covering the same scope but with a wider domain of applicability (e.g.: aerospace).

1 Scope

In this Part 15, existing satellites are described and examined from a thermal control and design view. The thermal control requirements are given and an assessment is made of the thermal control systems used against performance for each satellite.

The Thermal design handbook is published in 16 Parts

TR 17603-31-01	Thermal design handbook – Part 1: View factors
TR 17603-31-02	Thermal design handbook – Part 2: Holes, Grooves and Cavities
TR 17603-31-03	Thermal design handbook – Part 3: Spacecraft Surface Temperature
TR 17603-31-04	Thermal design handbook – Part 4: Conductive Heat Transfer
TR 17603-31-05	Thermal design handbook – Part 5: Structural Materials: Metallic and Composite
TR 17603-31-06	Thermal design handbook – Part 6: Thermal Control Surfaces
TR 17603-31-07	Thermal design handbook – Part 7: Insulations
TR 17603-31-08	Thermal design handbook – Part 8: Heat Pipes
TR 17603-31-09	Thermal design handbook – Part 9: Radiators
TR 17603-31-10	Thermal design handbook – Part 10: Phase – Change Capacitors
TR 17603-31-11	Thermal design handbook – Part 11: Electrical Heating
TR 17603-31-12	Thermal design handbook – Part 12: Louvers
TR 17603-31-13	Thermal design handbook – Part 13: Fluid Loops
TR 17603-31-14	Thermal design handbook – Part 14: Cryogenic Cooling
TR 17603-31-15	Thermal design handbook – Part 15: Existing Satellites
TR 17603-31-16	Thermal design handbook – Part 16: Thermal Protection System

2 References

EN Reference	Reference in text	Title
EN 16601-00-01	ECSS-S-ST-00-01	ECSS System - Glossary of terms
TR 17603-31-03	ECSS-E-HB-31-01 Part 3	Thermal design handbook – Part 3: Spacecraft Surface Temperature
TR 17603-31-05	ECSS-E-HB-31-01 Part 5	Thermal design handbook – Part 5: Structural Materials: Metallic and Composite
TR 17603-31-06	ECSS-E-HB-31-01 Part 6	Thermal design handbook – Part 6: Thermal Control Surfaces
TR 17603-31-07	ECSS-E-HB-31-01 Part 7	Thermal design handbook – Part 7: Insulations
TR 17603-31-08	ECSS-E-HB-31-01 Part 8	Thermal design handbook – Part 8: Heat Pipes
TR 17603-31-09	ECSS-E-HB-31-01 Part 9	Thermal design handbook – Part 9: Radiators
TR 17603-31-11	ECSS-E-HB-31-01 Part 11	Thermal design handbook – Part 11: Electrical Heating
TR 17603-31-12	ECSS-E-HB-31-01 Part 12	Thermal design handbook – Part 12: Louvers
TR 17603-31-13	ECSS-E-HB-31-01 Part 13	Thermal design handbook – Part 13: Fluid Loops
TR 17603-31-14	ECSS-E-HB-31-01 Part 14	Thermal design handbook – Part 14: Cryogenic Cooling

All other references made to publications in this Part are listed, alphabetically, in the **Bibliography**.

koniec náhľadu – text ďalej pokračuje v platenej verzii STN