

# Plasty Hodnotenie vlastnej biologickej odbúrateľnosti materiálov vystavených morskému inokulu v mezofilných aeróbnych laboratórnych podmienkach Skúšobné metódy a požiadavky (ISO 22403: 2020)

STN EN ISO 22403

64 8020

Plastics - Assessment of the intrinsic biodegradability of materials exposed to marine inocula under mesophilic aerobic laboratory conditions - Test methods and requirements (ISO 22403:2020)

Táto norma obsahuje anglickú verziu európskej normy. This standard includes the English version of the European Standard.

Táto norma bola oznámená vo Vestníku ÚNMS SR č. 01/22

Obsahuje: EN ISO 22403:2021, ISO 22403:2020

#### EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM

**EN ISO 22403** 

November 2021

ICS 13.020.40; 83.080.01

#### **English Version**

## Plastics - Assessment of the intrinsic biodegradability of materials exposed to marine inocula under mesophilic aerobic laboratory conditions - Test methods and requirements (ISO 22403:2020)

Plastiques - Évaluation de la biodégradabilité aérobie inhérente et de la sécurité environnementale des matériaux non flottants exposés à des inocula marins dans des conditions de laboratoire et mésophiles - Méthodes d'essai et exigences (ISO 22403:2020)

Kunststoffe - Bewertung der intrinsischen biologischen Abbaubarkeit von Materialien, die marinen Inokula unter mesophilen aeroben Laborbedingungen ausgesetzt sind - Prüfverfahren und Anforderungen (ISO 22403:2020)

This European Standard was approved by CEN on 8 November 2021.

CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom.



EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels

#### EN ISO 22403:2021 (E)

| Contents          | Page |
|-------------------|------|
| European foreword | 3    |

EN ISO 22403:2021 (E)

#### **European foreword**

The text of ISO 22403:2020 has been prepared by Technical Committee ISO/TC 61 "Plastics" of the International Organization for Standardization (ISO) and has been taken over as EN ISO 22403:2021 by Technical Committee CEN/TC 249 "Plastics" the secretariat of which is held by NBN.

This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by May 2022, and conflicting national standards shall be withdrawn at the latest by May 2022.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN shall not be held responsible for identifying any or all such patent rights.

Any feedback and questions on this document should be directed to the users' national standards body. A complete listing of these bodies can be found on the CEN website.

According to the CEN-CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom.

#### **Endorsement notice**

The text of ISO 22403:2020 has been approved by CEN as EN ISO 22403:2021 without any modification.

### INTERNATIONAL STANDARD

ISO 22403

First edition 2020-04

# Plastics — Assessment of the intrinsic biodegradability of materials exposed to marine inocula under mesophilic aerobic laboratory conditions — Test methods and requirements

Plastiques — Évaluation de la biodégradabilité aérobie inhérente et de la sécurité environnementale des matériaux non flottants exposés à des inocula marins dans des conditions de laboratoire et mésophiles — Méthodes d'essai et exigences





#### **COPYRIGHT PROTECTED DOCUMENT**

© ISO 2020

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Fax: +41 22 749 09 47 Email: copyright@iso.org

Website: www.iso.org Published in Switzerland

| Cont   | tents                 | P                                           | age      |
|--------|-----------------------|---------------------------------------------|----------|
| Forew  | ord                   |                                             | iv       |
| Introd | luction               |                                             | <b>v</b> |
| 1      | Scope                 |                                             | 1        |
| 2      | Norm                  | ative references                            | 1        |
| 3      | Terms and definitions |                                             | 2        |
| 4      | Requi                 | rements<br>Test material                    | 2        |
|        | 4.1                   | Test material                               | 2        |
|        | 4.2                   | Reference material                          | 2        |
|        | 4.3                   | Negative control                            | 2        |
|        | 4.4                   | Biodegradation test methods                 | 3        |
|        | 4.5                   | Biodegradation test methods<br>Requirements | 3        |
| 5      | Test r                | eport                                       | 4        |
| Biblio | graphy                | <i>T</i>                                    | 5        |

#### **Foreword**

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see <a href="www.iso.org/directives">www.iso.org/directives</a>).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see <a href="https://www.iso.org/patents">www.iso.org/patents</a>).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see <a href="https://www.iso.org/iso/foreword.html">www.iso.org/iso/foreword.html</a>.

This document was prepared by Technical Committee ISO/TC 61, *Plastics*, Subcommittee SC 14, *Environmental aspects*.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at <a href="https://www.iso.org/members.html">www.iso.org/members.html</a>.

#### Introduction

Biodegradation (i.e. biodegradation level and biodegradation rate) of a plastic product in any given environment is basically the result of three conditions:

- a) the intrinsic (i.e. potential) biodegradability of the material;
- b) the available surface and the shape of the product;
- c) the environmental conditions where the product is located.

A material's intrinsic biodegradability provides that its chemical structure is susceptible to enzymatic attack so that enzymes can cleave its chemical bonds. Under aerobic conditions (in the presence of  $O_2$ ) the ultimate biodegradation of a material only leads to the formation of  $CO_2$ ,  $H_2O$ , mineral salts and biomass.

Biodegradation of plastic materials is generally a bio-erosion process happening at the interface between the solid phase and the liquid phase where microbes live. It is a heterogeneous reaction. It is the surface rather than the concentration that controls the biodegradation rate. Thus, the higher the available surface the higher the biodegradation rate.

Environmental conditions determine the biodegradation rate as well. Temperature, nutrient availability, pH and the existing microbial population affect the biodegradation rate. Biodegradation can be slowed or even stopped if environmental conditions are not favourable, even if the material is intrinsically and ultimately biodegradable.

This document covers condition a) mentioned above.

The fate of plastics in the environment is considered important information. The contamination of seas with plastic waste is a relevant problem that should be controlled not least by means of leakage prevention measures such as mandatory collection of plastic items used in marine environments and environmental education. However, in some cases, the dispersal of plastic (waste) is almost unavoidable. For example, plastics are used to make fishing gears and products for fish, mussels, and oysters farming which are prone to be left or lost in the sea. In these cases, the possibility of using products made with biodegradable plastics might be contributing to reducing the risk linked with the dispersion of solid waste. In order to carry out a proper product design and in order to assess impact and risk of leakage, it is important to know whether a plastic material is intrinsically biodegradable when exposed to marine inocula.

# Plastics — Assessment of the intrinsic biodegradability of materials exposed to marine inocula under mesophilic aerobic laboratory conditions — Test methods and requirements

#### 1 Scope

This document specifies test methods and criteria for showing intrinsic biodegradability in marine environments of virgin plastic materials and polymers without any preliminary environmental exposure or pre-treatment.

Test methods applied in this document are carried out at temperatures in the mesophilic range under aerobic conditions and are aimed to show ultimate biodegradability, i.e. conversion into carbon dioxide, water and biomass.

This document neither assesses the constituents, such as regulated metals or substances hazardous to the environment, nor potential ecotoxic effects but intrinsic biodegradability only. These aspects will be considered in a separate standard covering the overall environmental impact of products intentionally or accidentally released in the marine environment.

This document does not cover the performance of products made from biodegradable plastic materials and biodegradable polymers. Lifetime and biodegradation rates in the sea of products made with biodegradable plastic materials are generally affected by the specific environmental conditions and by thickness and shape.

Although results might indicate that the tested plastic materials and polymers biodegrade under the specified test conditions at a certain rate, the results of any laboratory exposure cannot be directly extrapolated to marine environments at the actual site of use or leakage.

This document is not applicable for "marine biodegradable" claims of biodegradable plastic materials. For such purpose, see relevant product standards, if available.

The testing scheme specified in this document does not provide sufficient information for determining the specific biodegradation rate (i.e. the rate per available surface area) of the material under testing. For such purpose, see relevant standards about specific biodegradation rate, if available.

#### 2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 10210, Plastics — Methods for the preparation of samples for biodegradation testing of plastic materials

ISO 18830, Plastics — Determination of aerobic biodegradation of non-floating plastic materials in a seawater/sandy sediment interface — Method by measuring the oxygen demand in closed respirometer

ISO 19679, Plastics — Determination of aerobic biodegradation of non-floating plastic materials in a seawater/sediment interface — Method by analysis of evolved carbon dioxide

ISO 22404, Plastics — Determination of the aerobic biodegradation of non-floating materials exposed to marine sediment — Method by analysis of evolved carbon dioxide

ISO 23977-1:—<sup>1)</sup>, Plastics — Determination of the aerobic biodegradation of plastic materials exposed to seawater — Part 1: Method by analysis of evolved carbon dioxide

ISO 23977-2:—<sup>2)</sup>, Plastics — Determination of the aerobic biodegradation of plastic materials exposed to seawater — Part 2: Method by measuring the oxygen demand in closed respirometer

ASTM D6691-17, Standard Test Method for Determining Aerobic Biodegradation of Plastic Materials in the Marine Environment by a Defined Microbial Consortium or Natural Sea Water Inoculum

#### koniec náhľadu – text ďalej pokračuje v platenej verzii STN

<sup>1)</sup> Under development. Stage at the time of publication: ISO/DIS 23977-1:2020.

<sup>2)</sup> Under development. Stage at the time of publication: ISO/DIS 23977-2:2020.