сты	Kryostaty hélia Ochrana proti nadmernému tlaku	STN EN 17527
DIN		14 6000

Helium cryostats - Protection against excessive pressure

Táto norma obsahuje anglickú verziu európskej normy. This standard includes the English version of the European Standard.

Táto norma bola oznámená vo Vestníku ÚNMS SR Č. 02/22

Obsahuje: EN 17527:2021

134494

Úrad pre normalizáciu, metrológiu a skúšobníctvo Slovenskej republiky, 2022 Slovenská technická norma a technická normalizačná informácia je chránená zákonom č. 60/2018 Z. z. o technickej normalizácii.

EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM

EN 17527

December 2021

ICS 13.240; 23.020.40

English Version

Helium cryostats - Protection against excessive pressure

Cryostats pour hélium - Protection contre les surpressions Helium Kryostate - Schutz gegen Drucküberschreitung

This European Standard was approved by CEN on 15 November 2021.

CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom.

EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels

© 2021 CEN All rights of exploitation in any form and by any means reserved worldwide for CEN national Members.

Ref. No. EN 17527:2021 E

Contents

Europ	European foreword		
Introd	luction	7	
1	Scope	8	
2	Normative references	8	
3	Terms and definitions	8	
4	Symbols	14	
5	Process flow-charts	18	
5.1	Process flow-chart concerning risk assessment and protection concepts	18	
5.2	Process flow-chart concerning scenario-specific dimensioning of helium circuit	PRD	
		20	
6	Risk assessment	21	
6.1	General information on risk assessment	21	
6.2	Sources of excessive pressure rise relevant for dimensioning	21	
6.2.1	Loss of insulating vacuum	21	
6.2.2	Loss of beamline vacuum	21	
6.2.3	Quench of superconducting device	21	
6.2.4	Leak of cryogenic fluid	22	
6.2.5	Dielectric breakdown	22	
6.2.6	Entrapment of cryogenic fluid	22	
6.3	Sources of excessive pressure rise to be mitigated	22	
6.3.1	Thermal acoustic oscillation	22	
6.3.2	Cryopumping	23	
6.3.3	Power failure	23	
6.3.4	Pressure surge	23	
6.3.5	Freezing	23	
6.3.6	Backflow	23	
6.3.7	Other sources of excessive pressure	23	
6.3.8	Earthquake	24	
6.3.9	Fire	24	
0.4 6 E	Complined scenarios	24	
0.5	Risk assessment before ordering	24	
0.0	Kisk assessment in the design phase		
7	Protection concepts	25	
7.1	General	25	
7.2	Single-stage protection concept	25	
7.3	Multi-stage protection concepts	26	
7.3.1	General	26	
7.3.2	Pressure protection of high-pressure helium cryostats	27	
7.3.3	Pressure protection of low-pressure helium cryostats	27	
7.3.4	Pressure protection of sub-atmospheric helium cryostats	28	
7.3.5	Pressure protection of He-II cryostats	28	
7.3.6	Pressure protection of ultra-low temperature refrigerator systems	28	
8	Dimensioning of pressure relief devices	28	

8.1	Method for the dimensioning of pressure relief devices	.28
8.2	Calculation of the minimum discharge area	.29
8.3	Calculation of the fluid state properties at relieving conditions	.29
8.3.1	Calculation of the relieving pressure	.29
8.3.2	Calculation of the specific volume	.30
8.4	Calculation of the relieving mass flow rate	.32
8.4.1	General	. 32
8.4.2	Loss of insulating vacuum	.33
8.4.3	Loss of beamline vacuum	.33
8.4.4	Quench of a superconducting device	.34
8.4.5	Leak of cryogenic fluid	.37
8.4.6	Dielectric breakdown	. 38
8.4.7	Calculation of the specific enthalpy change	. 38
8.5	Calculation of the mass flux	. 39
8.5.1	General	. 39
8.5.2	Influence of upstream pipework	.41
8.5.3	Influence of downstream pipework	.42
8.6	Calculation of the discharge coefficient	.42
8.6.1	General	.42
8.6.2	Adaption of the discharge coefficient of PRV	.43
8.7	Transfer line systems	.43
8.8	Dimensioning of vacuum vessel PRD	.43
9	Pressure relief devices	44
91	General	<u> </u>
9.1	Pressure relief valves	44
93	Rursting discs	45
94	Combinations of pressure relief valves and hursting discs	45
9.5	Magnetic pressure relief devices	45
96	Pressure relief devices for insulating vacuum vessels	45
9.7	Mechanical supports for pressure relief devices	.45
9.8	Materials for pressure relief devices	46
10	Substance release	.46
10.1	General	.46
10.2	Discharge lines and discharge systems	.46
11	Operating, maintenance and inspection instructions	.46
11.1	General	.46
11.2	Specific instructions to be included in the operating, maintenance and inspect	ion
	instructions	.47
Annex	A (informative) Thermodynamic characteristics of helium	.48
A.1	Basics	. 48
A.2	Process path during relieving	.49
Annex	B (informative) Additional information on risk assessment	.52
R 1	Loss of insulating vacuum	52
B.2	Loss of heamline vacuum	54
R 3	Avench of superconducting device	54
D.J D 2 1	Quenen of superconducting device	54
D.3.1		. 54
в.з.2	Main cooling scenarios	. 56

B.4	Leak of cryogenic fluid	57
B.4.1	General	57
B.4.2	Leak-before-break behaviour	57
B.4.3	Material characteristics	57
B.4.4	Thermo-mechanical stress	58
B.5	Dielectric breakdown	58
B.6	Thermal acoustic oscillation	59
B.7	Cryopumping	61
B.8	Qualitative risk assessment	61
B.8.1	General	61
B.8.2	Probability level	64
B.8.3	Severity level	65
B.8.4	Criticality matrix	65
B.8.5	HAZOP table	67
Annex	C (informative) Protection concepts	68
C.1	Single-stage protection concept	68
C.2	Multi-stage protection concepts	69
C.2.1	General	69
C.2.2	Pressure protection of superconducting magnet systems	69
C.2.3	Pressure protection of superconducting radiofrequency cavities	71
C.2.4	Pressure protection of sub-atmospheric helium systems	72
C.2.5	Pressure protection of He-II systems	73
C.2.6	Pressure protection of ultra-low temperature refrigerator systems	74
Annex	D (informative) Dimensioning of pressure relief devices	76
D.1	Equivalence between EN ISO 4126-7:2013/A1:2016/EN ISO 21013-3:2016 and D.	276
D.2	Case-specific model for the dimensioning of pressure relief devices	80
D.2.1	General	80
D.2.2	Calculation of the minimum discharge area	80
D.2.3	Determination of the fluid velocity	80
D.2.4	Calculation of the discharge function	81
D.3	Influence of upstream pipework	83
D.4	Coefficient of discharge	85
D.5	Exemplary calculations of the minimum flow area	85
D.5.1	Example 1 – Vertical He-I magnet cryostat	85
D.5.2	Example 1 with the influence of downstream pipework	91
D.5.3	Example 2 – Superfluid He-II cryostat protected by two PRD in series – Subcrit relief	ical

D.5.4	Example 3 – Superfluid He-II cryostat protected by two PRD in series – Supercritical relief
Annex	E (informative) Types of pressure relief devices106
E.1	Application standards
E.2	Product standards 107
E.2.1	Purpose, prerequisites
E.2.2	Full-lift pressure relief valves
E.2.3	Standard pressure relief valves 110
E.2.4	Proportional pressure relief valves110
E.2.5	Pilot-operated pressure relief valves 110
E.2.6	Controlled pressure relief valves with an additional pneumatic load 111
E.2.7	PRV with magnetic actuation 111
E.2.8	Specific cryogenic PRV features 112
E.3	Bursting discs
E.3.1	Functional characteristics 113
E.3.2	Metal bursting discs
E.3.3	Graphite bursting discs 114
E.3.4	Long-term behaviour
E.3.5	Leak rates 115
E.4	Pressure relief valve / bursting disc combinations 115
E.5	Pressure relief devices for vacuum vessels116
Biblio	graphy

European foreword

This document (EN 17527:2021) has been prepared by Technical Committee CEN/TC 268 "Cryogenic vessels and specific hydrogen technologies applications", the secretariat of which is held by AFNOR.

This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by June 2022, and conflicting national standards shall be withdrawn at the latest by June 2022.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN shall not be held responsible for identifying any or all such patent rights.

Any feedback and questions on this document should be directed to the users' national standards body. A complete listing of these bodies can be found on the CEN website.

According to the CEN-CENELEC Internal Regulations, the national standards organisations of the following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom.

Introduction

Helium cryostats, other than cryogenic vessels used for storage of cryogenic liquids covered by EN ISO 21009-2 and EN 13458, include additional specific components such as superconducting magnets and cavities, electrical heaters, heat exchangers, bellows, circulation pumps and internal control valves. These components imply additional risks for sudden excessive pressure rise, which strongly influences the design of pressure relief systems and is not covered by existing standards. Helium cryostats are characterized by a variety of complex and individual design solutions, often exploiting small design margins for cutting-edge performance. Therefore, a common and specific technical solution for the protection against excessive pressure rise cannot be standardized. Rather, the approach on how to obtain the state-of-the-art protection can be standardized and therefore is covered by this document, specifying the procedure and minimum requirements for the various aspects in the main part of the document. Additional information, example solutions and exemplary measures are provided in the extensive Annex, which mirrors the structure of the main part.

This document covers the typical sources that can lead to excessive pressure rise in helium cryostats and the conditions, which are relevant for the protection against excessive pressure rise during system failures, in order to harmonize risk assessments and design best practices. The document uses common SI-based units.

The user of this document can refer to CEN/CENELEC Internal Regulations Part 3, which deals with the use of verbal forms for the formulation of provisions.

1 Scope

This document specifies the minimum requirements for the protection of helium cryostats against excessive pressure rise, including the specific risks associated with cryostats for superconducting magnets and cryostats for superconducting radio-frequency cavities, coldboxes of helium refrigerators and liquefiers as well as helium distribution systems including valve boxes. It includes information on risk assessment, protection concepts, dimensioning of pressure relief devices, types of pressure relief devices, substance release and operation of helium cryostats.

In order to fulfil the aim of this document, the characteristics of pressure relief devices are taken into account.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

EN 13445-2, Unfired pressure vessels - Part 2: Materials

EN 13445-3, Unfired pressure vessels - Part 3: Design

EN ISO 4126-1:2013, Safety devices for protection against excessive pressure - Part 1: Safety valves (ISO 4126-1:2013)

EN ISO 4126-3:2020, Safety devices for protection against excessive pressure - Part 3: Safety valves and bursting disc safety devices in combination (ISO 4126-3:2020)

EN ISO 4126-6:2014, Safety devices for protection against excessive pressure - Part 6: Application, selection and installation of bursting disc safety devices (ISO 4126-6:2014)

EN ISO 21013-3:2016, Cryogenic vessels - Pressure-relief accessories for cryogenic service - Part 3: Sizing and capacity determination (ISO 21013-3:2016)

koniec náhľadu – text ďalej pokračuje v platenej verzii STN