TNI	Kozmická technika Návod na skúšanie	TNI CEN/CLC/TR 17603-10-03
		31 0540

Space engineering - Testing guidelines

Táto technická normalizačná informácia obsahuje anglickú verziu CEN/CLC/TR 17603-10-03:2022. This Technical standard information includes the English version of CEN/CLC/TR 17603-10-03:2022.

Táto technická normalizačná informácia bola oznámená vo Vestníku ÚNMS SR č. 11/22

135884

Úrad pre normalizáciu, metrológiu a skúšobníctvo Slovenskej republiky, 2022 Slovenská technická norma a technická normalizačná informácia je chránená zákonom č. 60/2018 Z. z. o technickej normalizácii.

TECHNICAL REPORT RAPPORT TECHNIQUE TECHNISCHER REPORT

CEN/CLC/TR 17603-10-03

August 2022

ICS 49.140

English version

Space engineering - Testing guidelines

Ingénierie spatiale - Lignes directrices pour les essais

Raumfahrttechnik - Prüfrichtlinien

This Technical Report was approved by CEN on 16 August 2021. It has been drawn up by the Technical Committee CEN/CLC/JTC 5.

CEN and CENELEC members are the national standards bodies and national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Türkiye and United Kingdom.

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels

© 2022 CEN/CENELEC All rights of exploitation in any form and by any means reserved worldwide for CEN national Members and for **CENELEC** Members.

Table of contents

Europ	ean Foi	reword	10
Introd	uction		11
1 Scop			12
2 Refe	rences		13
3 Tern	ns, defii	nitions and abbreviated terms	15
3.1	Terms	from other documents	15
3.2	Terms	specific to the present document	15
	3.2.1	dummy	15
3.3	Abbrev	viated terms	16
4 Gen	eral req	uirements	21
4.1	Test pr	ogramme	21
	4.1.1	Test programme basics	21
	4.1.2	Specific tests	23
	4.1.3	Risks during testing	23
	4.1.4	Overtesting	24
	4.1.5	Test effectiveness	25
4.2	Develo	pment test prior to qualification	25
4.3	Test m	anagement	26
	4.3.1	General	26
	4.3.2	Test reviews	27
	4.3.3	Test documentation	29
	4.3.4	Anomaly or failure during testing	40
	4.3.5	Test data	40
4.4	Test co	onditions, input tolerances, and measurement uncertainties	41
	4.4.1	Test conditions	41
	4.4.2	Test input tolerances	42
	4.4.3	Measurement uncertainties	42
4.5	Test of	ojectives	45
	4.5.1	General requirements	45

	4.5.2	Qualification testing	45
	4.5.3	Acceptance testing	45
	4.5.4	Protoflight testing	46
4.6	Retesti	ng	46
	4.6.1	Overview	46
	4.6.2	Implementation of a design modification after completion of qualification	46
	4.6.3	Storage after protoflight or acceptance testing	46
	4.6.4	Space segment element or equipment to be re-flown	46
	4.6.5	Flight use of qualification Space segment element or equipment	47
5 Spac	e segr	nent equipment test requirements	48
5.1	Genera	Il requirements	48
5.2	Qualific	ation tests requirements	49
5.3	Accept	ance test requirements	49
5.4	Protofli	ght test requirements	49
5.5	Space	segment equipment test programme implementation requirements	50
	5.5.1	General tests	50
	5.5.2	Mechanical tests	53
	5.5.3	Structural integrity under pressure tests	56
	5.5.4	Thermal tests	57
	5.5.5	Electrical/RF tests	87
	5.5.6	Mission specific test	88
6 Spac	ce segm	nent element test requirements	89
6.1	Genera	Il requirements	89
6.2	Qualific	ation tests requirements	89
6.3	Accept	ance test requirements	90
6.4	Protofli	ght test requirements	90
6.5	Space	segment element test programme implementation requirements	90
	6.5.1	General tests	90
	6.5.2	Mechanical tests	113
	6.5.3	Structural integrity under pressure tests	117
	6.5.4	Thermal test	117
	6.5.5	Electromagnetic test	134
	6.5.6	Mission specific tests	135
	6.5.7	Crewed mission specific tests	135
7 Pre-l	aunch	testing	137

An	nex	A Mechanical tests	138
	A.1	Foreword	.138
	A.2	Physical properties measurements	.138
	A.3	Static Test	.143
	A.4	Spin test	.156
	A.5	Centrifuge test	.159
	A.6	Sine burst test	.161
	A.7	Sinusoidal vibration test	.165
	A.8	Random vibration testing	.177
	A.9	Acoustic testing	.182
	A.10	Shock testing	.188
	A.11	Thermal distortion test	.188
	A.12	Gravity release test	.193
	A.13	Micro-vibration environment verification by test	.194
An	nex	B Structural integrity under pressure tests	212
	B.1	Foreword	.212
	B.2	Leak test	.214
	B.3	Proof pressure test	.220
	B.4	Pressure cycling test	.221
	B.5	Design burst pressure test	.223
	B.6	Burst test	.224
An	nex	C Audible noise test	226
	C.1	Space segment equipment audible noise emission test	.226
	C.2	Space segment element audible noise emission test	.230
An	inex	D PIM tests	234
	D.1	PIM – guidelines for equipment testing	
	D.2	PIM – guidelines for payload testing	
	D.3	PIM – Guidelines for Element testing	
۸	nov		
	E.1	E Alignment measurements	
		Purpose	
	E.2 E.3	General	
	E.3 E.4	Test configuration and test aspects	
	E.4 E.5	Test preparation	
	-	Test execution	
	E.6	Test evaluation	
	E.7	Other alignment methodology	.264

Annex F List of test bench names	265
Annex G Referenced documents	

Figures

Figure 4-1:	Testing at S/C level and example of typical EGSE setup for JUICE S/C (courtesy Airbus Defence and Space)	1
Figure 4-2:	GOCE spacecraft Container	3
Figure 4-3:	Exomars Schiaparelli Descent Module Container	4
Figure 4-4:	AEOLUS multipurpose trolley	4
Figure 4-5:	Lifting device for Exomars Schiaparelli Descent module	5
Figure 4-6:	Test input in-tolerance or out-of-tolerance assessment (decision rule)4	3
Figure 4-7:	Conformity assessment with the guard bands approach (decision rule) $\dots 4$	4
Figure 5-1:	Relation between FFT, PT and RFT on equipment level5	0
Figure 5-2:	Unit TRP and Boundary Temperatures (conductive ITP and T_{Sink})6	0
Figure 5-3:	Thermal vacuum test profile (example n° 1 for "type a" units)6	6
Figure 5-4:	Thermal vacuum test profile (example n° 2 for "type a" units)6	6
Figure 5-5:	Hot plateau TRP temperatures drive (including "type a" units switch-on)7	0
Figure 5-6:	Cold plateau TRP temperatures drive (including "type a" units switch-on).7	1
Figure 5-7:	Unit temperature cycling mechanical and thermal configuration7	4
Figure 5-8:	Some common examples of equipment flight accomodation7	7
Figure 5-9:	Temperature controlled support and test set-up representativeness8	0
Figure 6-1:	Mapping of previous and current test terms in the ECSS-E-ST-10-03 standard9	2
Figure 6-2:	Typical sequence of tests for element level functional verification9	6
Figure 6-3:	Logical relationship between FFT-D (or FFT-Q), FFT-W(or FFT-A) and RF	
Figure 6-4:	Logical relation between model, test bench, test campaign, test item (IUT), test environment and test infrastructure10	
	Example of an SVF based on the mapping between ECSS-E-ST-10-02C/03C and ECSS-E-TM-10-21A10	3
Figure 6-6:	Example of solar generator unloading device for Sentinel 210	6
Figure 6-7:	Exomars TGO antenna offloading device10	6
Figure 6-8:	Top-level AOCS Control Chain Schematic11	0
Figure 6-9:	Fit check of Galileo Spacecraft with the launch dispenser11	3
Figure 6-10): Example of a thermal vacuum test profile for a space segment element12	1
Figure 6-11	: Unit TRP temperature control bands during space segment element plateaux	3
Figure 6-12	2: Unit TRP temperatures drive feasibility (example of a P/F equipment bay) 12	

Figure A-1 : CoG measurement along 1st lateral axis1	39
Figure A-2 : CoG measurement along 2nd lateral axis1	40
Figure A-3 : CoG measurement along vertical axis1	40
Figure A-4 : M80 physical properties measurement machine with Bepi-Colombo MCS at ESTEC1	
Figure A-5 : WM50/6 combined CoG and MoI measurement machine with IXV STM1	42
Figure A-6 : WM50/6 combined CoG and MoI measurement machine with Goce PFM	
Figure A-7 : Rack static test configuration-1/41	46
Figure A-8 : Rack Static tests configuration-2/41	46
Figure A-9 : Rack Static tests configuration-3/41	47
Figure A-10 : Rack Static tests configuration-4/41	47
Figure A-11 : Automated Transfer Vehicle (ATV) primary structure test article1	49
Figure A-12 : Setting of ATV primary structure static test1	50
Figure A-13 : ATV static test fixtures: "Base" to constrain the test article and "Tower" support the internal jacks	
Figure A-14 : ATV static test: internal loading jacks arrangement1	52
Figure A-15 : ATV static test: internal loading jacks details1	53
Figure A-16 : ATV static test: external view and external loading jacks1	54
Figure A-17 : ATV static test: layout of the displacement transducers1	55
Figure A-18 : Dynamic balancing facility installed in a vacuum chamber (Large Space Simulator at ESTEC)1	
Figure A-19 : Meteosat Flight Model during spin test1	57
Figure A-20 : GPM spacecraft undertakes centrifuge test at Goddard (courtesy of NASA)	60
Figure A-21 : Centrifuge test of ExoMars Descent Module (courtesy of Lavoshkin)1	60
Figure A-22 : Example of Sine Burst with a frequency of 15 Hz and 6 cycles at maximum load of 12g (figure taken from NESC Technical Bulletin 15-02)	63
Figure A-23 : Example of primary and secondary notching1	
Figure A-24 : Typical Sine excitation at spacecraft base1	
Figure A-25 : Example of test sequence for random vibration1	
Figure A-26 : Typical full level random specification1	
Figure A-27 : Rosetta in the ESTEC Large Acoustic Facility1	
Figure A-28 -Antenna reflector acoustic test in ESTEC acoustic facility1	
Figure A-29 : ATV STM-B Solar array wing in IABG reverberant chamber (Courtesy Dutch Space)	
Figure A-30 : Typical acoustic noise specification1	
Figure A-31 : LISA Pathfinder Science Module structure on kinematic support for thermal distortion test	88

Figure A-32 : Typical temperature profile for thermal distortion test
Figure A-33 : Illustration of different courses of laser beams for LISA Pathfinder Science Module thermal distortion test190
Figure A-34 : Videogrammetry measurements during LISA Pathfinder Science Module thermal distortion test191
Figure A-35 : Overview of camera positions used during LISA Pathfinder Science Module thermal distortion test to generate the images of the test article .191
Figure A-36 : Displacement of targets mounted on LPF SCM external structure for a temperature variation from +9,5°C (reference temperature) to +40,5°C192
Figure A-37 : NIRSpec engineering test unit (ETU) during gravity-release test (courtesy: EADS Astrium)194
Figure A-38 Principle of measurement of the micro-vibration generated by an equipment
Figure A-39 : ESA reaction wheel characterisation facility in room conditions and in with vacuum bell (mN range frequency band up to 1 kHz)
Figure A-40 : Micro-vibration measurement test, indirect force characterisation198
Figure A-41 : Example of test instrumentation for micro-vibration test at equipment level using indirect method measurement199
Figure A-42 : View of test instrumentation during Water Pump Assembly (WPA) micro- vibration test at equipment level using indirect method measurement199
Figure A-43 : Test setup for a test of equipment susceptibility to microvibrations202
Figure A-44 : Micro-vibration measurement system of ESA ESTEC allows 6 Dof excitation and 6 Dof measurement202
Figure A-45 : Example of configuration used for the microvibration test on MTG, by using small shakers (grey) to introduce well defined excitations on a mass dummy of a reaction wheel
Figure A-46 : Example of configurations used for the microvibration test on MTG, by using small shakers (grey) to introduce well defined excitations on a mass dummy of a reaction wheel. Force (left), and moments (centre and right)
Figure A-47 : SPOT4 satellite micro-vibration test
Figure A-48 : Typical background noise acceleration PSD
Figure A-49 : VVIS acceptance test time history red top surface blue – bottom input 210
Figure A-50 : ESA micro-vibration universal reference excitation unit (0,05 Hz to 10Hz, 10 μ N to 5 N, 10 μ Nm to 1,5 Nm)210
Figure A-51 : Typical table for microvibration emission measurement (mN range limited frequency bandwidth)211
Figure B-1 : Sketch of the Vacuum chamber method215
Figure B-2 : Accumulation Leak Test set up216
Figure B-3 : Enclosure Calibration216
Figure B-4 : Cupola Accumulation leak test overview
Figure B-5 : Cupola Accumulation Leak Test He capillary leak source217
Figure B-6 : Node 2 accumulation leak test on a joint _typical set-up217

Figure C-1	: View of Water Pump Assembly (WPA) test article during audible noise at equipment level	
Figure C-2	2 : Example of test instrumentation plan for audible noise test at equipmer level	
Figure C-3	3 : View of test instrumentation during Water Pump Assembly (WPA) audi noise test at equipment level	
Figure C-4	: View of COLUMBUS test article (external view: seen from deck-aft perspective) during audible noise test at element level	.230
Figure C-5	: Illustration of different microphone position inside COLUMBUS during audible noise test at element level	.231
Figure C-6	: Picture of COLUMBUS internal microphones during audible noise test element level	
Figure D-1	: Sketch from a typical Conducted PIM test bed	.235
Figure D-2	2 : Radiated PIM test bed: each carrier is transmitted via a dedicated ante	
Figure D-3	3 : Radiated PIM test bed: both carriers are transmitted by the same anter	
Figure D-4	Radiated PIM test bed: both carriers are transmitted via the same ante	
Figure D-5	5 : Typical RF power profile for PIM tests: transmission carriers	.238
Figure D-6	: Typical element (payload) inside an anechoic chamber for validation te under nominal scenario	
Figure D-7	' : Test bed placed to radiate the anechoic chamber walls according to payload disposition	.242
Figure D-8	3 : Radiated PIM test bed: each carrier is transmitted via a dedicated ante	
Figure D-9	: Radiated PIM test bed: both carriers are transmitted by the same anter	
Figure D-1	0 : Radiated PIM test bed: both carriers are transmitted via the same	
-: D (
•	1 : Typical RF power profile for PIM tests: transmission carriers	
•	Coordinate Systems relationship	
•	: General sketch of a laser tracker	
0	: Typical setup for alignment using laser tracker	
-	: Laser tracker axis and laser beam	
•	i : Theodolites main components	
•	: Typical Theodolites	
•	: Measurement setup with theodolites	
-	E Laser Tracker environment creation	
•	: Laser tracker (Aligned to MBS) measuring theodolite line of sight	
Figure E-1	0 : Corner Cube Reflector	.263

Tables

Table 4-1: Typical EGSE/SCOE list
Table 5-1: Nomenclature for temperature cycling implementation on "type a" units65
Table 5-2: Thermal vacuum step by step procedure (example n° 1 for "type a" units) .67
Table 5-3: Thermal vacuum step by step procedure (example n° 2 for "type a" units) .68
Table 6-1: List of typical Space segment element models on which functional tests are executed (Verification Level: Space segment element)
Table 6-2: List of Functional tests, Performance, Mission and Polarity Tests
Table 6-3: Typical list of test benches for functional verification on Space segment element verification level
Table 6-4: Typical mapping of the functional test phases with regard to test configuration
Table 6-5: Multipactor, RF corona and RF power occurrence versus relevant investigations at Element level
Table A-1 : Performances of the ESA/ESTEC MVS shaker for equipment or element testing
Table A-2 : Classification of noise sources affecting micro-vibration tests 209
Table D-1 : Typical RF power profile for PIM tests
Table D-2 : Typical RF power profile for PIM tests
Table D-3 : Example of PIM scenario
Table E-1 : Laser tracker typical performances
Table F-1 : List of legacy/historical test bench names 265

European Foreword

This document (CEN/CLC/TR 17603-10-03:2022) has been prepared by Technical Committee CEN/CLC/JTC 5 "Space", the secretariat of which is held by DIN.

It is highlighted that this technical report does not contain any requirement but only collection of data or descriptions and guidelines about how to organize and perform the work in support of EN 16603-10-03.

This Technical report (TR 17603-10-03:2022) originates from ECSS-E-HB-10-03A.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN [and/or CENELEC] shall not be held responsible for identifying any or all such patent rights.

This document has been prepared under a mandate given to CEN by the European Commission and the European Free Trade Association.

This document has been developed to cover specifically space systems and has therefore precedence over any TR covering the same scope but with a wider domain of applicability (e.g.: aerospace).

Introduction

Testing is an important part of a Space Project, because of its impact on cost and because is the most effective way to demonstrate a product functionalities and performances.

As such, this Handbook is of outmost importance in defining how the requirements can be implemented into the verification approach and in providing "real life" experience and examples in order to have an effective application into the test execution.

In order to meet this objective, the WG have tried, in preparing this Handbook, to be as exhaustive as possible in providing methods and techniques, as well as examples, in a punctual one-to-one requirement versus guideline approach.

The WG also recognized that this approach, even if punctually exhaustive, provided in most cases an unstructured definition of the tests as a whole giving a leopard spots information which may not be useful in preparing and conducting a test.

As a consequence, the WG have decided to complement the main body of the Handbook with Annexes where a structured and comprehensive test organization has been defined and described.

In those cases, testing people can find how a test is prepared, applied and executed in terms, for example, of test setup, test configuration, used instrumentation and test facilities/equipment, test preparation suggestions, safety rules to be considered, data acquisition and reporting content, together with pictures, tables and sketches of real cases,

This approach has allowed, in particular for Mechanical, Microvibration and Integrity Tests as well as for Alignment and PIM tests, to have in one shot a complete and structured set of guidelines easing the implementation of the requirements of such tests.

It is to be underlined that some of this material comes from the ECSS-E-HB-32-26 "Spacecraft mechanical load analysis handbook", which contained a lot of information about mechanical testing.

It is worthy to pay attention that the Annexes of this Testing Guidelines do not correspond to the Annexes of the Testing Standard.

Moreover, this handbook only applies for the Revised version of the ECSS-E-ST-10-03 Standard (ECSS-E-ST-10-03C Rev.1, 31 May 2022).

1 Scope

This handbook provides additional information for the application of the testing standard ECSS-E-ST-10-03 to a space system product.

This handbook does not contain requirements and therefore cannot be made applicable. In case of conflict between the standard and this handbook, the standard prevails.

This handbook is relevant for both the customer and the supplier of the product during all project phases.

To facilitate the cross-reference, this handbook follows as much as practical, the structure of the standard even if, as written in the Introduction, some tests are described in the Annexes to allow a better comprehensive view.

Where test material is already covered in other ECSS handbook, this document refers to them instead of duplicating the information, this is the case of ECSS-E-HB-32-25 "Mechanical shock design and verification handbook" and the various parts of ECSS-E-HB-31-01 "Thermal design handbook".

As the Standard applies to different products at different product levels of the space segment, the space segment equipment and the space segment elements. In the testing standard the requirements applicable to each level are addressed in different chapters clearly identified. The standard clearly states that it is not applicable to other segment (launch and ground) as well as software; as a consequence, no pre-tailoring matrix is needed.

Moreover, as per testing standard, this handbook does not contain guidelines for constellation programmes.

Testing aspects are derived from the verification approach covered in the ECSS-E-ST-10-02 and in its corresponding handbook ECSS-E-HB-10-02.

The application of the requirements of the standard to a particular project is intended to result in effective product verification and consequently to a high confidence in achieving successful product operations for the intended use, in this respect this handbook has the goal to help reaching these objectives.

2 References

EN Reference	Reference in text	Title
EN 16601-00-01	ECSS-S-ST-00-01	ECSS – Glossary of terms
EN 16603-10-02	ECSS-E-ST-10-02	Space engineering - Verification
EN 16603-10-03	ECSS-E-ST-10-03	Space engineering - Testing
EN 16603-31	ECSS-E-ST-31	Space engineering - Thermal control general requirements
EN 16603-31-02	ECSS-E-ST-31-02	Space engineering – Two-phase heat transport equipment
EN 16603-32-02	ECSS-E-ST-32-02	Space engineering – Structural design and verification of pressurized hardware
EN 16603-33-11	ECSS-E-ST-33-11	Space engineering - Explosive subsystems and devices
EN 16603-35-02	ECSS-E-ST-35-02	Space engineering - Solid propulsion for spacecrafts and launchers
EN 16603-ST-40	ECSS-E-ST-40	Space engineering - Software
TR 17603-10-02	ECSS-E-HB-10-02	Space engineering - Verification guidelines
TR 17603-20-01	ECSS-E-HB-20-01	Space engineering - Multipactor handbook
TR 17603-20-07	ECSS-E-HB-20-07	Space engineering - Electromagnetic compatibility handbook
TR 17603-31-01 to	ECSS-E-HB-31-01	Space engineering – Thermal design handbook
TR 17603-31-16	(all parts)	
TR 17603-32-25	ECSS-E-HB-32-25	Space engineering - Mechanical shock design and verification handbook
TR 17603-32-26	ECSS-E-HB-32-26	Space engineering - Spacecraft mechanical loads analysis handbook
EN 16602-10-09	ECSS-Q-ST-10-09	Space product assurance – Nonconformance control system
EN 16602-70-01	ECSS-Q-ST-70-01	Space product assurance – Cleanliness and contamination control
EN 16602-70-05	ECSS-Q-ST-70-05	Space product assurance – Non-destructive testing
EN 16602-80	ECSS-Q-ST-80	Space product assurance – Software product assurance
	NASA-STD-7012	Leak test requirement
	ATS paper_MATED Improvement (October 2018)	MATED (Model And Test Effectiveness Database) Improvement and Added Value on Industry

]]	MTF.AIDT.TN.2168, Issue 1, Rev.1 (3 March 2020)	Dynamited Final Report
1	ECSSMET 2016 (article)	DYNAMIC TESTS, WHAT'S BEHIND THE CURVES ?
	MSG-NNT-SE-TN-0742 (28 October 1996)	Notching guidelines for mechanical test
(TASI-ASE-ORP- 0006_Iss.01 (20 October 2014)	Analysis of Spacecraft qualification Sequence & Environmental Testing (ASSET)
	TASI-ASE-ORP-0009_01 (3 October 2016)	Analysis of Spacecraft qualification Sequence & Environmental Testing (ASSET+)

koniec náhľadu – text ďalej pokračuje v platenej verzii STN