STN	Stanovenie intenzity vysokofrekvenčných polí, hustoty výkonu a špecifickej miery absorpcie (SAR) v okolí rádiokomunikačných základňových staníc na účely hodnotenia expozície osôb	STN EN IEC 62232
		36 7087

Determination of RF field strength, power density and SAR in the vicinity of base stations for the purpose of evaluating human exposure

Táto norma obsahuje anglickú verziu európskej normy. This standard includes the English version of the European Standard.

Táto norma bola oznámená vo Vestníku ÚNMS SR Č. 01/23

Obsahuje: EN IEC 62232:2022, IEC 62232:2022

Oznámením tejto normy sa od 18.11.2025 ruší STN EN 62232 (36 7087) z apríla 2018

136322

Úrad pre normalizáciu, metrológiu a skúšobníctvo Slovenskej republiky, 2023 Slovenská technická norma a technická normalizačná informácia je chránená zákonom č. 60/2018 Z. z. o technickej normalizácii.

EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM

EN IEC 62232

November 2022

ICS 13.280; 17.240

Supersedes EN 62232:2017

English Version

Determination of RF field strength, power density and SAR in the vicinity of base stations for the purpose of evaluating human exposure (IEC 62232:2022)

Détermination de l'intensité de champ de radiofréquences, de la densité de puissance et du DAS à proximité des stations de base dans le but d'évaluer l'exposition humaine (IEC 62232:2022) Bestimmung der HF-Feldstärke, der Leistungsdichte und der spezifischen Absorptionsrate (SAR) in der Nachbarschaft von Funkkommunikations-Basisstationen zur Ermittlung der menschlichen Exposition (IEC 62232:2022)

This European Standard was approved by CENELEC on 2022-11-18. CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.

Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CENELEC member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CENELEC member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.

CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Türkiye and the United Kingdom.

European Committee for Electrotechnical Standardization Comité Européen de Normalisation Electrotechnique Europäisches Komitee für Elektrotechnische Normung

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels

EN IEC 62232:2022 (E)

European foreword

The text of document 106/576/FDIS, future edition 3 of IEC 62232, prepared by IEC/TC 106 "Methods for the assessment of electric, magnetic and electromagnetic fields associated with human exposure" was submitted to the IEC-CENELEC parallel vote and approved by CENELEC as EN IEC 62232:2022.

The following dates are fixed:

- latest date by which the document has to be implemented at national (dop) 2023-08-18 level by publication of an identical national standard or by endorsement
- latest date by which the national standards conflicting with the (dow) 2025-11-18 document have to be withdrawn

This document supersedes EN 62232:2017 and all of its amendments and corrigenda (if any).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CENELEC shall not be held responsible for identifying any or all such patent rights.

Any feedback and questions on this document should be directed to the users' national committee. A complete listing of these bodies can be found on the CENELEC website.

Endorsement notice

The text of the International Standard IEC 62232:2022 was approved by CENELEC as a European Standard without any modification.

In the official version, for Bibliography, the following note has to be added for the standard indicated:

ISO/IEC 17025 NOTE Harmonized as EN ISO/IEC 17025

EN IEC 62232:2022 (E)

Annex ZA (normative)

Normative references to international publications with their corresponding European publications

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

NOTE 1 Where an International Publication has been modified by common modifications, indicated by (mod), the relevant EN/HD applies.

NOTE 2 Up-to-date information on the latest versions of the European Standards listed in this annex is available here: <u>www.cenelec.eu</u>.

Publication	<u>Year</u>	<u>Title</u>	<u>EN/HD</u>	<u>Year</u>
IEC/IEEE 62209- 1528	-	Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-worn wireless communication devices - Part 1528: Human models, instrumentation and procedures (Frequency range of 4 MHz to 10 GHz)	EN IEC/IEEE 62209- 1528	-
IEC 62209-3	-	Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Part 3: Vector measurement-based systems (Frequency range of 600 MHz to 6 GHz)	EN IEC 62209-3	-
IEC 62311	-	Assessment of electronic and electrical equipment related to human exposure restrictions for electromagnetic fields (0 Hz to 300 GHz)	EN IEC 62311	-
IEC 62479	-	Assessment of the compliance of low- power electronic and electrical equipment with the basic restrictions related to human exposure to electromagnetic fields (10 MHz to 300 GHz)	EN 62479	-
IEC/IEEE 62704-1	-	Determining the peak spatial-average specific absorption rate (SAR) in the human body from wireless communications devices, 30 MHz to 6 GHz - Part 1: General requirements for using the finite difference time-domain (FDTD) method for SAR calculations	-	-

EN IEC 62232:2022 (E)

Publication	<u>Year</u>	<u>Title</u>	EN/HD	Year
IEC/IEEE 62704-2	-	Determining the peak spatial-average specific absorption rate (SAR) in the human body from wireless communications devices, 30 MHz to 6 GHz - Part 2: Specific requirements for finite difference time domain (FDTD) modelling of exposure from vehicle mounted antennas	-	-
IEC/IEEE 62704-3	-	Determining the peak spatial-average specific absorption rate (SAR) in the	-	-

- specific absorption rate (SAR) in the human body from wireless communications devices, 30 MHz to 6 GHz - Part 3: Specific requirements for using the finite difference time domain (FDTD) method for SAR calculations of mobile phones
- IEC/IEEE 62704-4 Determining the peak spatial-average specific absorption rate (SAR) in the human body from wireless communication devices, 30 MHz to 6 GHz - Part 4: General requirements for using the finite element method for SAR calculations
- IEC/IEEE 63195-1 IEC/IEEE 63195-1 ED1: Measurement procedure for the assessment of power density of human exposure to radio frequency fields from wireless devices operating in close proximity to the head and body – Frequency range of 6 GHz to 300 GHz
- IEC/IEEE 63195-2 IEC/IEEE 63195-2 ED1: Determining the power density of the electromagnetic field associated with human exposure to wireless devices operating in close proximity to the head and body using computational techniques, 6 GHz to 300 GHz

INTERNATIONAL STANDARD

Determination of RF field strength, power density and SAR in the vicinity of base stations for the purpose of evaluating human exposure

THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2022 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

IEC Secretariat 3, rue de Varembé CH-1211 Geneva 20 Switzerland

Tel.: +41 22 919 02 11 info@iec.ch www.iec.ch

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigendum or an amendment might have been published.

IEC publications search - webstore.iec.ch/advsearchform

The advanced search enables to find IEC publications by a variety of criteria (reference number, text, technical committee, ...). It also gives information on projects, replaced and withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublished Stay up to date on all new IEC publications. Just Published details all new publications released. Available online and once a month by email.

IEC Customer Service Centre - webstore.iec.ch/csc

If you wish to give us your feedback on this publication or need further assistance, please contact the Customer Service Centre: sales@iec.ch.

IEC Products & Services Portal - products.iec.ch

Discover our powerful search engine and read freely all the publications previews. With a subscription you will always have access to up to date content tailored to your needs.

Electropedia - www.electropedia.org

The world's leading online dictionary on electrotechnology, containing more than 22 300 terminological entries in English and French, with equivalent terms in 19 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online.

INTERNATIONAL STANDARD

Determination of RF field strength, power density and SAR in the vicinity of base stations for the purpose of evaluating human exposure

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ICS 13.280; 17.240

ISBN 978-2-8322-5778-4

Warning! Make sure that you obtained this publication from an authorized distributor.

- 2 -

IEC 62232:2022 © IEC 2022

CONTENTS

FC	REWO	RD	. 16
IN	TRODU	CTION	. 18
1	Scop	e	. 19
2	Norm	ative references	.20
3	Term	s and definitions	.21
4	Symb	ools and abbreviated terms	. 36
	4.1	Physical quantities	. 36
	4.2	Constants	. 36
	4.3	Abbreviated terms	. 36
5	How	to use this document	. 39
	5.1	Quick start guide	. 39
	5.2	RF evaluation purpose categories	.42
	5.3	Implementation case studies	.42
6	Evalı in-sit	ation processes for product compliance, product installation compliance and uRF exposure assessments	.42
	6.1	Evaluation process for product compliance	.42
	6.1.1	General	.42
	6.1.2	Establishing compliance boundaries	.42
	6.1.3	Iso-surface compliance boundary definition	.43
	6.1.4	Simple compliance boundaries	.43
	6.1.5	Methods for establishing the compliance boundary	.45
	6.1.6	Uncertainty	.49
	6.1.7	Reporting for product compliance	.49
	6.2	Evaluation process used for product installation compliance	.50
	6.2.1	General	. 50
	6.2.2	General evaluation procedure for product installations	.50
	6.2.3	Product installation compliance based on the actual maximum transmitted power or EIRP	.52
	6.2.4	Product installation data collection	.55
	6.2.5	Simplified product installation evaluation process	.56
	6.2.6	Assessment area selection	.59
	6.2.7	Measurements	.60
	6.2.8	Computations	. 62
	6.2.9	Uncertainty	. 62
	6.2.1	0 Reporting for product installation compliance	.63
	6.3	In-situ RF exposure evaluation or assessment process	.64
	6.3.1	General	.64
	6.3.2	In-situ measurement process	.64
	6.3.3	Site analysis	.65
	6.3.4	Case A evaluation	.66
	6.3.5	Case B evaluation	.66
	6.3.6	Uncertainty	.67
	6.3.7	Reporting	.67
	б.4	Averaging procedures	.67
	6.4.1	Spatial averaging	.67
7	0.4.2	I me averaging	80.
1	Derei	mining the evaluation method	.00

71	Overview	68
7.1	Process to determine the evaluation method	68
7.2.1	General	68
7.2.2	Establishing the evaluation points in relation to the source-environment	
	plane	69
7.2.3	Exposure metric selection	70
8 Eval	uation methods	71
8.1	General	71
8.2	Measurement methods	72
8.2.1	General	72
8.2.2	RF field strength and power density measurements	72
8.2.3	SAR measurements	73
8.3	Computation methods	74
8.4	Methods for assessment based on actual maximum approach	76
8.4.1	General requirements	76
8.4.2	Actual transmitted power or EIRP monitoring	76
8.4.3	Actual transmitted power or EIRP control	77
8.5	Methods for the assessment of RF exposure to multiple sources	78
8.6	Methods for establishing the BS transmitted power or EIRP	79
9 Unce	rtainty	80
10 Repo	orting	80
10.1	General requirements	80
10.2	Report format	81
10.3	Opinions and interpretations	82
Annex A	(informative) Source-environment plane and guidance on the evaluation	
Annex A method s	(informative) Source-environment plane and guidance on the evaluation election	83
Annex A method s A.1	(informative) Source-environment plane and guidance on the evaluation election Guidance on the source-environment plane	83 83
Annex A method s A.1 A.1.1	(informative) Source-environment plane and guidance on the evaluation election Guidance on the source-environment plane General	83 83 83
Annex A method s A.1 A.1.2	(informative) Source-environment plane and guidance on the evaluation election Guidance on the source-environment plane General Source-environment plane example	83 83 83 83
Annex A method s A.1 A.1.2 A.1.2	(informative) Source-environment plane and guidance on the evaluation election Guidance on the source-environment plane General Source-environment plane example Source regions	83 83 83 83 84
Annex A method s A.1 A.1.2 A.1.3 A.2	(informative) Source-environment plane and guidance on the evaluation election Guidance on the source-environment plane General Source-environment plane example Source regions Select between computation or measurement approaches	83 83 83 83 84 90
Annex A method s A.1 A.1.2 A.1.2 A.1.2 A.2 A.3	(informative) Source-environment plane and guidance on the evaluation election Guidance on the source-environment plane General Source-environment plane example Source regions Select between computation or measurement approaches Select measurement method	83 83 83 84 90 91
Annex A method s A.1 A.1.2 A.1.2 A.1.3 A.2 A.3 A.3	(informative) Source-environment plane and guidance on the evaluation election Guidance on the source-environment plane General Source-environment plane example Source regions Select between computation or measurement approaches Select measurement method Selection stages	83 83 83 84 90 91
Annex A method s A.1 A.1.2 A.1.2 A.1.2 A.1.2 A.2 A.3 A.3 A.3.2	 (informative) Source-environment plane and guidance on the evaluation Guidance on the source-environment plane General Source-environment plane example Source regions Select between computation or measurement approaches Select measurement method Selection stages Selecting between RF field strength, power density and SAR 	83 83 83 84 90 91 91
Annex A method s A.1 A.1.2 A.1.2 A.1.3 A.2 A.3 A.3 A.3.2	 (informative) Source-environment plane and guidance on the evaluation Guidance on the source-environment plane General Source-environment plane example Source regions Select between computation or measurement approaches Select measurement method Selection stages Selecting between RF field strength, power density and SAR measurement approaches 	83 83 83 84 90 91 91
Annex A method s A.1 A.1.2 A.1.2 A.1.2 A.1.2 A.1.2 A.2 A.3 A.3.2 A.3.2 A.3.2	 (informative) Source-environment plane and guidance on the evaluation Guidance on the source-environment plane General Source-environment plane example Source regions Select between computation or measurement approaches Select measurement method Selection stages Selecting between RF field strength, power density and SAR measurement approaches Selecting between broadband and frequency selective measurement 	83 83 83 90 91 91 91 92 03
Annex A (method s A.1 A.1.2 A.1.2 A.1.3 A.2 A.3 A.3.2 A.3.2 A.3.2 A.3.2 A.3.2 A.3.2 A.3.2 A.3.2	 Ginformative) Source-environment plane and guidance on the evaluation Guidance on the source-environment plane General Source-environment plane example Source regions Select between computation or measurement approaches Select measurement method Selection stages Selecting between RF field strength, power density and SAR measurement approaches Selecting between broadband and frequency selective measurement Selecting RF field strength measurement procedures 	83 83 84 90 91 91 91 92 93 02
Annex A (method s) A.1 A.1.2 A.1.2 A.1.3 A.2 A.3 A.3.2 A.3.2 A.3.2 A.3.2 A.3.2 A.3.4 A.3.2 A.3.4 A.3.2	 (informative) Source-environment plane and guidance on the evaluation Guidance on the source-environment plane	83 83 83 90 91 91 91 91 92 93 93
Annex A method s A.1 A.1.2 A.3 A.3.2 A.3.3 A.3.2 A.3.3 A.3.3 A.3.4 A.3.4 A.3.5 A.3.5 A.3.5 A.3.5 A.3.5 A.3.5 A.3.5 A.3.5 A.3.5 A.3.5 A.3.5 A.3.5 A.5.5	 (informative) Source-environment plane and guidance on the evaluation Guidance on the source-environment plane	83 83 83 90 91 91 91 91 93 93 95
Annex A method s A.1 A.1.2 A.1.2 A.1.3 A.2 A.3 A.3.2 A.3.3 A.3.2 A.3.3 A	 Source-environment plane and guidance on the evaluation Guidance on the source-environment plane General Source-environment plane example Source regions Select between computation or measurement approaches Select measurement method Selection stages Selecting between RF field strength, power density and SAR measurement approaches Selecting between broadband and frequency selective measurement Selecting RF field strength measurement procedures Select computation method Additional considerations Simplicity. 	83 83 83 90 91 91 91 91 91 92 93 95 95
Annex A (method s) A.1 A.1.2 A.3 A.3.2 A.3.3 A.	Informative) Source-environment plane and guidance on the evaluation Belection General General Source-environment plane example Source regions Source regions Select between computation or measurement approaches Selection stages Selecting between RF field strength, power density and SAR measurement approaches Selecting between broadband and frequency selective measurement Selecting RF field strength measurement procedures Select computation method Select computation method Selecting RF field strength measurement procedures Selecting RF field strength measurement procedures Selecting RF field strength measurement procedures Select computation method Selecting RF field strength measurement procedures Select method Selecting RF field strength measurement procedures Select computation method Selecting RF field strength measurement procedures Select computation method Simplicity Additional considerations Simplicity Supplying multiple methods for RE exposure evaluation	83 83 83 90 91 91 91 91 92 93 93 95 95
Annex A (method s) A.1 A.1.7 A.1.2 A.1.3 A.2 A.3 A.3 A.3.7 A.3.2 A.3.7 A.3.2 A.3.3 A.3.2 A.3.3 A.3.2 A.3.3	 Source-environment plane and guidance on the evaluation Guidance on the source-environment plane General Source-environment plane example Source regions Select between computation or measurement approaches Select measurement method Selecting between RF field strength, power density and SAR measurement approaches Selecting between broadband and frequency selective measurement Select computation method Select computation method Selecting RF field strength measurement procedures Selecting RF field strength measurement procedures Select computation method Additional considerations Simplicity Evaluation method ranking Applying multiple methods for RF exposure evaluation 	83 83 83 90 91 91 91 91 91 93 95 95 95 95
Annex A method s A.1 A.1.2 A.3 A.3.2 A.3.3	informative) Source-environment plane and guidance on the evaluation Guidance on the source-environment plane General General Source-environment plane example Source regions Select between computation or measurement approaches Select between computation or measurement approaches Select measurement method Selection stages Selection stages Selecting between RF field strength, power density and SAR measurement approaches Selecting between broadband and frequency selective measurement Selecting RF field strength measurement procedures Select computation method Additional considerations Simplicity Evaluation method ranking Applying multiple methods for RF exposure evaluation Cuerview Evaluation methods	83 83 83 90 91 91 91 91 91 93 95 95 95 95 95
Annex A method s A.1 A.1.2 A.1.2 A.1.2 A.1.2 A.1.2 A.1.2 A.1.2 A.1.2 A.1.2 A.1.2 A.1.2 A.3 A.3.2 A.3.3 A.3.2 A.3.3	informative) Source-environment plane and guidance on the evaluation Guidance on the source-environment plane General General Source-environment plane example Source regions Select between computation or measurement approaches Select between computation or measurement approaches Selection stages Selection stages Selection stages Selecting between RF field strength, power density and SAR measurement approaches Selecting between broadband and frequency selective measurement Selecting RF field strength measurement procedures Select computation method Additional considerations Simplicity Evaluation method ranking Applying multiple methods for RF exposure evaluation Converview Converview	83 83 83 90 91 91 91 91 91 91 91 95 95 95 95 96 96
Annex A (method s) A.1 A.1.2 A.1.2 A.1.3 A.2 A.3 A.3.2 A.3 A.3.2 A.3.3 A.3.2 A.3.3 A.3.3 A.3.2 A.3.3	informative) Source-environment plane and guidance on the evaluation Guidance on the source-environment plane General General Source-environment plane example Source regions Select between computation or measurement approaches Select between computation or measurement approaches Selection stages Selection stages Selection stages Selecting between RF field strength, power density and SAR measurement approaches Selecting between broadband and frequency selective measurement Selecting RF field strength measurement procedures Select computation method Additional considerations Simplicity Simplicity Evaluation method sfor RF exposure evaluation Applying multiple methods for RF exposure evaluation Overview General Coordinate custome and reference pointe	83 83 83 90 91 91 91 91 91 91 91 95 95 95 95 96 96 96
Annex A (method s) A.1 A.1.2 A.1.2 A.1.2 A.1.2 A.1.2 A.1.2 A.1.2 A.1.2 A.1.2 A.1.2 A.1.2 A.1.2 A.3.3 A.3.2 A.3.3 A.3.2 A.3.3 A.3.2 A.3.3 A.3.2 A.3.3 A.3.2 A.3.3 A.3.2 A.3.3 A.3.2 A.3.3 A.3.2 A.3.3 A.3.2 A.3.3 A.3.2 A.3.3 A.3.2 A.3.3 A.3.2 A.3.3 A.3.2 A.3.3	 Guidance on the source-environment plane and guidance on the evaluation Guidance on the source-environment plane General Source-environment plane example Source regions Select between computation or measurement approaches Select measurement method Selecting between RF field strength, power density and SAR measurement approaches Selecting between broadband and frequency selective measurement Select computation method Select computation method Select computation method Selecting RF field strength measurement procedures Select computation method Additional considerations Simplicity Evaluation methods for RF exposure evaluation Applying multiple methods Overview General Coordinate systems and reference points 	83 83 83 90 91 91 91 91 91 93 95 95 95 95 95 96 96 96 96
Annex A (method s) A.1 A.1.2 A.1.2 A.1.3 A.2 A.3 A.3.2 A.3 A.3.2 A.3.3 A.3.2 A.3.3 A.3.3 A.3.3 A.3.3 A.3.3 A.3.3 A.3.3 A.3.3 A.3.3	 Source-environment plane and guidance on the evaluation Guidance on the source-environment plane General Source-environment plane example Source regions Select between computation or measurement approaches Select measurement method Selecting stages Selecting between RF field strength, power density and SAR measurement approaches Selecting between broadband and frequency selective measurement Selecting RF field strength measurement procedures Select computation method Additional considerations Simplicity Evaluation methods for RF exposure evaluation Applying multiple methods Overview General Coordinate systems and reference points Variables 	83 83 84 90 91 91 91 91 91 91 93 93 95 95 95 95 95 95 96 96 96 97 97
Annex A (method s) A.1 A.1.2 A.3.2 A.3.3 A.3.2 A.3.3 A.3.2 A.3.3	 (informative) Source-environment plane and guidance on the evaluation election	83 83 83 84 90 91 91 91 91 91 93 95 95 95 95 95 95 96

- 4 -

B.3.2	Measurement of RF field strength and power density	102
B.3.3	Spatial averaging	104
B.3.4	Time averaging	107
B.3.5	Comparing measured and computed values	109
B.3.6	Personal RF monitors	109
B.4 RF	field strength and power density measurements	109
B.4.1	Applicability of RF field strength and power density measurements	109
B.4.2	In-situ RF exposure measurements	109
B.4.3	Laboratory based RF field strength and power density measurements	121
B.4.4	RF field strength and power density measurement uncertainty	131
B.5 SA	R measurements	136
B.5.1	Overview of SAR measurements	136
B.5.2	SAR measurement requirements	136
B.5.3	SAR measurement description	138
B.5.4	SAR measurement uncertainty	143
B.6 Ba	sic computation methods	146
B 6 1	General	146
B.6.2	Basic computation formulas for RF field strength or power density	140
B.6.3	Basic whole-body SAR and peak spatial-average SAR evaluation	140
B.6.4	formulas Basic compliance boundary assessment method for BS using parabolic	153
B 6 5	dish antennas	160
D.0.5	radiating cables	163
B.7 Ad	vanced computation methods	164
B.7.1	General	164
B.7.2	Synthetic model and ray tracing algorithms	164
B.7.3	Full wave RF exposure computation	171
B.7.4	Full wave SAR computation	180
B.8 Ext	rapolation from the evaluated values to the maximum or actual values	185
B.8.1	Extrapolation method	185
B.8.2	Extrapolation to maximum in-situ RF field strength or power density using broadband measurements	187
B.8.3	Extrapolation to maximum in-situ RF field strength / power density using	
	frequency or code selective measurements	187
B.8.4	Influence of traffic in real operating network	188
B.8.5	Extrapolation for massive MIMO and beamforming BS	189
B.8.6	Maximum exposure extrapolation with dynamic spectrum sharing (DSS)	191
B.9 Gu	idance for implementing the actual maximum approach	192
B.9.1	BS actual EIRP evaluation assumptions	192
B.9.2	Technology duty-cycle factor description	193
B.9.3	CDF evaluation using modelling studies	195
B.9.4	CDF evaluation using measurement studies on operational BS sites	196
B.9.5	Actual transmitted power or EIRP monitoring counters	198
B.9.6	Configurations with multiple transmitters	198
B.10 Tra	G I	
	nsmitted power or EIRP evaluation	200
B.10 1	nsmitted power or EIRP evaluation General	200 200
B.10.1 B.10.2	nsmitted power or EIRP evaluation General Measurement of the transmitted power in conducted mode	200 200 200
B.10.1 B.10.2 B.10.3	nsmitted power or EIRP evaluation General Measurement of the transmitted power in conducted mode Measurement of the transmitted power in OTA conditions	200 200 200 201

IEC 62232:2022	2 © IEC 2022 – 5 –	
B 10 4	leasurement of the FIRP in OTA and laboratory conditions	201
B 10 5	Aeasurement of the EIRP in OTA and in-situ conditions	202
Annex C (inform	pative) Guidelines for the validation of power or FIRP control features	
and monitoring	counter(s) related to the actual maximum approach	203
C.1 Overv	/iew	203
C.2 Guide	elines for validating control feature(s) and monitoring counters	203
C.3 Valida	ation of power or EIRP monitoring counter in laboratory conditions	204
C.3.1 \ t	/alidation of power or EIRP monitoring counter in conducted mode –	204
C.3.2 \	/alidation of power or EIRP monitoring counter in OTA mode – test procedure	206
C.3.3 \	/alidation of control feature(s) in laboratory conditions	209
C.3.4 \	/alidation of control features using in-situ measurements	212
C.4 Valida	ation test report	214
C.5 Case	studies	215
C.5.1 (Case study A – In-situ validation	215
C.5.2 (Case study B – In-situ validation	219
C.5.3 (Case study C – In-situ validation	222
Annex D (inform	native) Rationale supporting simplified product installation criteria	227
D.1 Gene	ral	227
D.2 Class	E2	227
D.3 Class	E10	228
D.4 Class	E100	229
D.5 Class	E+	231
D.6 Simpl beam	ified formulas for millimetre-wave antennas using massive MIMO or steering	232
Annex E (inform	ative) Technology-specific exposure evaluation guidance	234
E.1 Overv	view to guidance on specific technologies	234
E.2 Sumn	nary of technology-specific information	234
E.3 Guida	ance on spectrum analyser settings	235
E.3.1 0	Overview of spectrum analyser settings	235
E.3.2 [Detection algorithms	236
E.3.3 F	Resolution bandwidth and channel power processing	236
E.3.4 I	ntegration per service	239
E.4 Stable	e transmitted power signals	239
E.4.1 1	DMA/FDMA technology	239
E.4.2 V	VCDMA/UMTS technology	240
E.4.3 C	DFDM technology	241
E.5 WCD	MA measurement and calibration using a code domain analyser	241
E.5.1 V	VCDMA measurements – General	241
E.5.2 V	VCDMA decoder characteristics	241
E.5.3 C	Calibration	242
E.6 Wi-Fi	measurements	244
E.6.1 0	General	244
E.6.2 I	ntegration time for reproducible measurements	245
E.6.3 0	Channel occupation	245
E.6.4 S	Some considerations	246
E.6.5 N	Aeasurement configuration and steps	246
E.6.6 I	nfluence of the application layers	247

- 6 -

E.7	Power control	247
	LTE measurements	248
E.7.1	Overview	248
E.7.2	LTE transmission modes	248
E.7.3	LTE-FDD frame structure	249
E.7.4	LTE-TDD frame structure	250
E.7.5	Maximum LTE exposure evaluation	252
E.7.6	Instantaneous LTE exposure evaluation	257
E.7.7	MIMO multiplexing of LTE BS	258
E.8	NR BS measurements	258
E.8.1	General	258
E.8.2	Maximum NR exposure evaluation	258
E.9	Establishing compliance boundaries using numerical simulations of MIMO	268
F 9 1	General	268
E Q 2	Field combining near base stations for correlated exposure with the	200
L.3.2	purpose of establishing compliance boundaries	268
E.9.3	Numerical simulations of MIMO array antennas with densely packed	260
	Numerical simulations of large MIMO array antennas	203
E 10	Massive MIMO antennas	270
E.10 E 10	1 Overview	270
E.10	2 Deterministic concernative encreach	270
E.10	2 Statistical concervative approach	270
E.10	Statistical conservative approach	270
	4 Example approaches	27 1
2020 brie	f exposure limits	288
F 1		
	General	288
F.2	General Brief exposure limits	288 288
F.2 F.3	General Brief exposure limits Implications of brief exposure limits on signal modulation and TDD duty	288 288
F.2 F.3	General Brief exposure limits Implications of brief exposure limits on signal modulation and TDD duty cycle	288 288 290
F.2 F.3 F.4	General Brief exposure limits Implications of brief exposure limits on signal modulation and TDD duty cycle Implications of brief exposure limits on the actual maximum approach	288 288 290 290
F.2 F.3 F.4 Annex G	General Brief exposure limits Implications of brief exposure limits on signal modulation and TDD duty cycle Implications of brief exposure limits on the actual maximum approach	288 288 290 290 294
F.2 F.3 F.4 Annex G G.1	General Brief exposure limits Implications of brief exposure limits on signal modulation and TDD duty cycle Implications of brief exposure limits on the actual maximum approach (informative) Uncertainty Background	288 288 290 290 294 294
F.2 F.3 F.4 Annex G G.1 G.2	General Brief exposure limits Implications of brief exposure limits on signal modulation and TDD duty cycle Implications of brief exposure limits on the actual maximum approach (informative) Uncertainty Background Requirement to estimate uncertainty	288 288 290 290 294 294 294
F.2 F.3 F.4 Annex G G.1 G.2 G.3	General Brief exposure limits Implications of brief exposure limits on signal modulation and TDD duty cycle Implications of brief exposure limits on the actual maximum approach (informative) Uncertainty Background Requirement to estimate uncertainty How to estimate uncertainty	288 288 290 290 294 294 294 295
F.2 F.3 F.4 Annex G G.1 G.2 G.3 G.4	General Brief exposure limits Implications of brief exposure limits on signal modulation and TDD duty cycle Implications of brief exposure limits on the actual maximum approach (informative) Uncertainty Background Requirement to estimate uncertainty How to estimate uncertainty Guidance on uncertainty and assessment schemes	288 288 290 290 294 294 294 295 295
F.2 F.3 F.4 Annex G G.1 G.2 G.3 G.4 G.4.7	General Brief exposure limits Implications of brief exposure limits on signal modulation and TDD duty cycle Implications of brief exposure limits on the actual maximum approach (informative) Uncertainty Background Requirement to estimate uncertainty How to estimate uncertainty Guidance on uncertainty and assessment schemes General	288 290 290 290 294 294 295 295 295
F.2 F.3 F.4 Annex G G.1 G.2 G.3 G.4 G.4.2 G.4.2	General Brief exposure limits Implications of brief exposure limits on signal modulation and TDD duty cycle Implications of brief exposure limits on the actual maximum approach (informative) Uncertainty Background Requirement to estimate uncertainty How to estimate uncertainty Guidance on uncertainty and assessment schemes General Overview of assessment schemes	288 288 290 290 294 294 294 295 295 295 295
F.2 F.3 F.4 Annex G G.1 G.2 G.3 G.4 G.4.2 G.4.2 G.4.3	General Brief exposure limits Implications of brief exposure limits on signal modulation and TDD duty cycle Implications of brief exposure limits on the actual maximum approach (informative) Uncertainty Background Requirement to estimate uncertainty How to estimate uncertainty Guidance on uncertainty and assessment schemes General Overview of assessment schemes Examples of assessment schemes	288 288 290 290 294 294 294 295 295 295 295 295 296
F.2 F.3 F.4 Annex G G.1 G.2 G.3 G.4 G.4.2 G.4.2 G.4.2	General Brief exposure limits Implications of brief exposure limits on signal modulation and TDD duty cycle Implications of brief exposure limits on the actual maximum approach (informative) Uncertainty Background Requirement to estimate uncertainty How to estimate uncertainty Guidance on uncertainty and assessment schemes General Overview of assessment schemes Examples of assessment schemes Assessment schemes and compliance probabilities	288 288 290 290 294 294 294 295 295 295 295 296 299
F.2 F.3 F.4 Annex G G.1 G.2 G.3 G.4 G.4.2 G.4.2 G.4.2 G.4.2 G.4.2 G.4.2	General Brief exposure limits Implications of brief exposure limits on signal modulation and TDD duty cycle Implications of brief exposure limits on the actual maximum approach (informative) Uncertainty Background Requirement to estimate uncertainty How to estimate uncertainty Guidance on uncertainty and assessment schemes General Overview of assessment schemes Examples of assessment schemes Assessment schemes and compliance probabilities Guidance on uncertainty	288 288 290 290 294 294 294 295 295 295 295 295 296 299 301
F.2 F.3 F.4 Annex G G.1 G.2 G.3 G.4 G.4.2 G.4.2 G.4.2 G.4.2 G.4.2 G.4.2 G.4.2 G.4.2 G.5 G.5	General Brief exposure limits Implications of brief exposure limits on signal modulation and TDD duty cycle Implications of brief exposure limits on the actual maximum approach (informative) Uncertainty Background Requirement to estimate uncertainty How to estimate uncertainty Guidance on uncertainty and assessment schemes General Overview of assessment schemes Assessment schemes and compliance probabilities Guidance on uncertainty	288 288 290 290 294 294 294 295 295 295 295 295 295 296 299 301 301
F.2 F.3 F.4 Annex G G.1 G.2 G.3 G.4 G.4 G.4 G.4 G.4 G.5 G.5 C.5	General Brief exposure limits Implications of brief exposure limits on signal modulation and TDD duty cycle Implications of brief exposure limits on the actual maximum approach (informative) Uncertainty Background Requirement to estimate uncertainty How to estimate uncertainty Guidance on uncertainty and assessment schemes General Overview of assessment schemes Assessment schemes and compliance probabilities Guidance on uncertainty Guidance on uncertainty Measurement uncertainty and confidence levels	288 288 290 290 294 294 294 295 295 295 295 295 296 299 301 301 302
F.2 F.3 F.4 Annex G G.1 G.2 G.3 G.4 G.4.2 G.4.2 G.4.2 G.4.2 G.5.2 G.5.2 G.6	General. Brief exposure limits Implications of brief exposure limits on signal modulation and TDD duty cycle Implications of brief exposure limits on the actual maximum approach (informative) Uncertainty Background. Requirement to estimate uncertainty How to estimate uncertainty Guidance on uncertainty and assessment schemes General Overview of assessment schemes Assessment schemes and compliance probabilities Guidance on uncertainty Overview Measurement uncertainty and confidence levels Applying uncertainty for compliance assessments	288 288 290 290 294 294 294 295 295 295 295 295 295 296 299 301 301 302 303
F.2 F.3 F.4 Annex G G.1 G.2 G.3 G.4 G.4 G.4 G.4 G.4 G.4 G.4 G.4 G.4 G.4	General Brief exposure limits Implications of brief exposure limits on signal modulation and TDD duty cycle Implications of brief exposure limits on the actual maximum approach (informative) Uncertainty Background Requirement to estimate uncertainty How to estimate uncertainty Guidance on uncertainty and assessment schemes General Overview of assessment schemes Examples of assessment schemes Guidance on uncertainty Massessment schemes Assessment schemes and compliance probabilities Measurement uncertainty and confidence levels Applying uncertainty for compliance assessments Example influence guantities for field measurements	288 288 290 290 294 294 294 295 293 301 302 303 304
F.2 F.3 F.4 Annex G G.1 G.2 G.3 G.4 G.4 G.4.2 G.4.2 G.4.2 G.4.2 G.4.2 G.4.2 G.4.2 G.4.2 G.4.2 G.5 G.5.2 G.5.2 G.6 G.7 G.7	General. Brief exposure limits Implications of brief exposure limits on signal modulation and TDD duty cycle Implications of brief exposure limits on the actual maximum approach (informative) Uncertainty Background Requirement to estimate uncertainty How to estimate uncertainty Guidance on uncertainty and assessment schemes General 2 Overview of assessment schemes 3 Examples of assessment schemes 4 Assessment schemes and compliance probabilities Guidance on uncertainty Overview 2 Measurement uncertainty and confidence levels Applying uncertainty for compliance assessments Example influence quantities for field measurements	288 288 290 290 294 294 294 295 295 295 295 295 295 296 301 301 302 303 304 304
F.2 F.3 F.4 Annex G G.1 G.2 G.3 G.4 G.4 G.4 G.4 G.4 G.4 G.4 G.4 G.5 G.5 G.5 G.5 G.5 G.6 G.7 G.7 G.7	General Brief exposure limits Implications of brief exposure limits on signal modulation and TDD duty cycle Implications of brief exposure limits on the actual maximum approach (informative) Uncertainty Background Requirement to estimate uncertainty How to estimate uncertainty Guidance on uncertainty and assessment schemes General Overview of assessment schemes Examples of assessment schemes Assessment schemes and compliance probabilities Guidance on uncertainty Overview Measurement uncertainty and confidence levels Applying uncertainty for compliance assessments Example influence quantities for field measurements General Calibration uncertainty of measurement antenna or field probe	288 288 290 290 294 294 294 294 295 301 301 302 304 304 304 304
F.2 F.3 F.4 Annex G G.1 G.2 G.3 G.4 G.4 G.4 G.4 G.4 G.4 G.4 G.5 G.5 G.5 G.5 G.5 G.5 G.7 G.7 G.7 G.7 G.7	General. Brief exposure limits Implications of brief exposure limits on signal modulation and TDD duty cycle Implications of brief exposure limits on the actual maximum approach (informative) Uncertainty Background Requirement to estimate uncertainty How to estimate uncertainty Guidance on uncertainty and assessment schemes General Overview of assessment schemes Basessment schemes Assessment schemes and compliance probabilities Guidance on uncertainty Overview Measurement uncertainty and confidence levels Applying uncertainty for compliance assessments Example influence quantities for field measurements General Calibration uncertainty of measurement antenna or field probe Frequency response of the measurement antenna or field probe	288 288 290 290 294 294 294 295 301 301 302 304 304 304 304
F.2 F.3 F.4 Annex G G.1 G.2 G.3 G.4 G.4 G.4 G.4 G.4 G.4 G.4 G.4 G.4 G.4	General. Brief exposure limits Implications of brief exposure limits on signal modulation and TDD duty cycle Implications of brief exposure limits on the actual maximum approach (informative) Uncertainty Background Requirement to estimate uncertainty How to estimate uncertainty Guidance on uncertainty and assessment schemes General Qoverview of assessment schemes Assessment schemes and compliance probabilities Guidance on uncertainty Overview Assessment schemes and compliance probabilities Guidance on uncertainty Overview Assessment schemes and compliance levels Applying uncertainty for compliance assessments. Example influence quantities for field measurements General Calibration uncertainty of measurement antenna or field probe Seneral Calibration uncertainty of measurement antenna or field probe Isotropy of the measurement antenna or field probe	288 288 290 290 294 294 294 295 301 301 304 304 304 304 304 304

- 7 -

075	Frequency reasonable of the encetrum encloser	206
G.7.5	Trequency response of the spectrum analyser	300
G.7.6	l'emperature response of a broadband field probe	306
G.7.7	Linearity deviation of a broadband field probe	307
G.7.8	Mismatch uncertainty	307
G.7.9	Deviation of the experimental source from numerical source	307
G.7.10	Meter fluctuation uncertainty for time-varying signals	307
G.7.11	Uncertainty due to power variation in the RF source	308
G.7.12	Uncertainty due to field gradients	308
G.7.13	Mutual coupling between measurement antenna or isotropic probe and object	309
G.7.14	Uncertainty due to field scattering from the surveyor's body	310
G.7.15	Measurement device	312
G.7.16	Fields out of measurement range	312
G.7.17	Noise	313
G.7.18	Integration time	313
G.7.19	Power chain	313
G.7.20	Positioning system	313
G.7.21	Matching between probe and the EUT	
G 7 22	Drifts in output power of the FUT probe temperature and humidity	313
G 7 23	Perturbation by the environment	313
G.8 Eva	ample influence quantities for RF field strength computations by ray	
trac	cing or full wave methods	
G 8 1	General	314
G 8 2	System	314
G 8 3	Technique uncertainties	315
G.8.4	Environmental uncertainties	215
G.0.4	Linviolimental uncertainties	
0.9 1		
G.9.1	General	
G.9.2	Post-processing	
G.9.3		316
G.9.4	EUT positioning	317
G.9.5	Phantom shell uncertainty	318
G.9.6	SAR correction depending on target liquid permittivity and conductivity	318
G.9.7	Liquid permittivity and conductivity measurements	319
G.9.8	Liquid temperature	319
G.10 Infl	uence quantities for SAR calculations	319
G.11 Spa	atial averaging	319
G.11.1	General	319
G.11.2	Small-scale fading variations	320
G.11.3	Error on the estimation of local average power density	321
G.11.4	Characterization of environment statistical properties	322
G.11.5	Characterization of different spatial averaging schemes	322
G.12 Infl	uence of human body on measurements of the electric RF field strength	327
G.12.1	Simulations of the influence of human body on measurements based on the method of moments (surface equivalence principle)	327
G.12.2	Comparison with measurements	329
G 12 3	Conclusions	330
Annex H (info	rmative) Guidance on comparing evaluated parameters with a limit value	331
H.1 Ove	erview	331

- 8 - IEC 62232:2022 © IEC 202	22
 H.2 Information recommended to compare evaluated value against limit value	31 31 32 33
Figure 1 – Quick start guide to the evaluation process Figure 2 – Example of iso-surface compliance boundary Figure 3 – Example of cylindrical and half-pipe compliance boundaries Figure 4 – Example of box shaped compliance boundary	40 43 44 45
Figure 5 – Example of truncated box shaped compliance boundary Figure 6 – Example illustrating the linear scaling procedure	45 46 48
Figure 8 – Example of compliance boundary shape for BS antennas with beam steering Figure 9 – Example of dish antenna compliance boundary	48 49 51
Figure 10 – Flowchart describing the product installation evaluation process Figure 11 – Example of a CDF curve representing the normalized actual transmitted power or EIRP	53
maximum transmitted power or EIRP threshold(s)	55 56 60
Figure 15 – In-situ RF exposure evaluation or assessment process flow chart	65 69
Figure 17 – Flow chart of the measurement methods Figure 18 – Flow chart of the relevant computation methods Figure 19 – Example of segments used for monitoring and control of BS using mMIMO or beam steering	72 75 77
Figure A.1 – Example source-environment plane regions near a base station antenna on a tower	83
has a narrow vertical (elevation plane) beamwidth (not to scale) Figure A.3 – Geometry of an antenna with largest linear dimension <i>L_{eff}</i> and largest end dimension <i>L_{end}</i>	84 85
Figure A.4 – Maximum path difference for an antenna with largest linear dimension L	89 97
Figure B.2 – Typical RF exposure assessment case	99 00 01
Figure B.5 – General representation of RF field strength or power density measurements	02 03

Figure B.7 – Spatial averaging schemes relative to walking or standing surface and in the vertical plane oriented to offer maximum area in the direction of the source being evaluated	105
Figure B.8 – Spatial averaging relative to spatial-peak field strength point height	107
Figure B.9 – Evaluation locations	119
Figure B.10 – Relationship of separation of remote radio source and evaluation area to separation of evaluation points	120
Figure B.11 – Outline of the surface scanning methodology	123
Figure B.12 – Block diagram of the antenna measurement system	124
Figure B.13 – Minimum radius constraint, where a denotes the minimum radius of a sphere, centred at the reference point, that encompasses the EUT	125
Figure B.14 – Maximum angular sampling spacing constraint	125
Figure B.15 – Outline of the volume/surface scanning methodology	128
Figure B.16 – Block diagram of typical near-field EUT measurement system	129
Figure B.17 – Examples of positioning of the EUT relative to the relevant phantom	136
Figure B.18 – Phantom liquid volume and measurement volume used for whole-body SAR measurements with the box-shaped phantoms	143
Figure B.19 – Reference frame employed for cylindrical formulas for RF field strength computation at a point P (left), and on a line perpendicular to boresight (right)	147
Figure B.20 – Views illustrating the three valid zones for field strength computation around an antenna	149
Figure B.21 – Enclosed cylinder around collinear array antennas, with and without electrical downtilt	150
Figure B.22 – Spherical formulas reference results	153
Figure B.23 – Cylindrical formulas reference results	153
Figure B.24 – Directions for which SAR estimation expressions are provided	154
Figure B.25 – Description of SAR estimation formulas physical parameters	155
Figure B.26 – Flow chart for the simplified assessment of RF compliance boundary in the line of sight of a parabolic dish antenna	162
Figure B.27 – Radiating cable geometry	163
Figure B.28 – Synthetic model and ray tracing algorithms geometry and parameters	167
Figure B.29 – Line 4 far-field positions for synthetic model and ray tracing validation example	169
Figure B.30 – Antenna parameters for synthetic model and ray tracing algorithms validation example	170
Figure B.31 – Generic 900 MHz BS antenna with nine dipole radiators	177
Figure B.32 – Line 1, 2 and 3 near-field positions for full wave and ray tracing validation	178
Figure B.33 – Generic 1 800 MHz BS antenna with five slot radiators	179
Figure B.34 – BS antenna placed in front of a multi-layered lossy cylinder	185
Figure B.35 – Time variation over 24 h of the exposure induced by NR, GSM and FM, each normalized to the mean value	189
Figure B.36– Generic structure of a base station transmitted RF signal frame	194
Figure B.37 – Example of setup for the direct power level measurement for BS equipped with direct access conducted output ports	201
Figure C.1 – Example of a laboratory test setup for validation of an actual power control feature intended for use with a 5G BS	210

– 10 – IEC 6

Figure C.2 – Example of a test setup for validation of an actual power control feature implemented in a 5G BS	3
Figure C.3 – Ground based in-situ validation setup	6
Figure C.4 – In-situ validation measurement setup near the general public compliance boundary in front of the 5G massive MIMO antenna (bore sight position)21	7
Figure C.5 – Comparison between measured time-averaged EMF and power control feature (5G counter data) for the ground-based measurements	8
Figure C.6 – Measured exposure adaptation in time expressed as a percentage of ICNIRP limits [1], [2] for the measurements near the general public compliance boundary	8
Figure C.7 – Overview of the measurement site	0
Figure C.8 – Ground view of the validation site and measurement setup, located 60 m from the 5G BS, in the line of sight	1
Figure C.9 – Power transmitted by the massive MIMO antenna (top trace), channel power (ChP) measurements (middle trace) and transmitted resource blocks (RBs) (bottom trace)	1
Figure C.10 – Overview of the test platform	3
Figure C.11 – Example of synthetic model simulation of the test area	3
Figure C.12 – Examples of traffic load profiles	3
Figure C.13 – Example of testing in different segments in the test area	4
Figure C.14 – Results of the monitoring validation and baseline test in phase 122	5
Figure C.15 – Example of power density measurements and power density derived from counters	5
Figure C.16 – Measured power density and power density derived from counters	6
Figure C.17 – Comparisons of both counters and measurements	6
Figure D.1 – Measured ER as a function of distance for a BS (G = 5 dBi, f = 2 100 MHz) transmitting with an EIRP of 2 W (installation class E2) and 10 W (installation class E10)	7
Figure D.2 – Minimum installation height as a function of transmitting power corresponding to installation class E10	8
Figure D.3 – Compliance distance in the main lobe as a function of EIRP established in accordance with the far-field formula corresponding to installation class E100	9
Figure D.4 – Minimum installation height as a function of transmitting power corresponding to installation class E100	0
Figure D.5 – Averaged power density at ground level for various installation configurations of equipment with 100 W EIRP (installation class E100)23	1
Figure D.6 – Compliance distance in the main lobe CD _m as a function of EIRP	
established in accordance with the far-field formula corresponding to installation class E+	2
Figure D.7 – Minimum installation height h_m as a function of EIRP corresponding to installation class E+	2
Figure D.8 – Power density distribution in watts per square metre in a vertical cut plane for an 8 × 8 antenna array at 28 GHz (grid step of 10 cm)	3
Figure D.9 – Power density distribution in watts per square metre in a vertical cut plane for an 8 × 8 antenna array at 39 GHz (grid step of 10 cm)	3
Figure E.1 – Spectral occupancy for GMSK23	7
Figure E.2 – Spectral occupancy for CDMA	8
Figure E.3 – Channel allocation for a WCDMA signal24	1
Figure E.4 – Example of Wi-Fi frames244	4

Figure E.5 – Channel occupation versus the integration time for IEEE 802.11b standard	45
Figure E.6 – Channel occupation versus nominal throughput rate for IEEE 802.11b/g standards	46
Figure E.7 – Wi-Fi spectrum trace snapshot2	46
Figure E.8 – Frame structure of transmission signal for LTE-FDD downlink2	50
Figure E.9 – Frame structure LTE-TDD type 2 (for 5 ms switch-point periodicity)2	51
Figure E.10 – Frame structure of transmission signal for LTE-TDD	51
Figure E.11 – LTE-TDD PBCH measurement example2	54
Figure E.12 – Example of VBW setting for LTE-FDD and LTE-TDD to avoid underestimation	55
Figure E.13 – Examples of received waves from LTE-FDD downlink signals using a spectrum analyser using zero span mode	56
Figure E.14 – LTE-TDD PBCH measurement example spectrum analyser using zero span mode	57
Figure E.15 – Example of VBW setting for NR to avoid underestimation2	61
Figure E.16 – Examples of measurement accuracy results according to the ratio of VBW and RBW for NR SCS 30 kHz and 1 MHz RBW using various SA types (A to D)2	61
Figure E.17 – Waterfall reconstruction plot of a 1 s long measurement trace of an NR signal with subcarrier spacing (SCS) 30 kHz (along one component of the electric field)2	62
Figure E.18 – Example of NR signal frame measured on SA with SSB signal above PDSCH (data)2	62
Figure E.19 – Example of NR signal frame measured on SA with SSB signal below or equal to PDSCH (data)	63
Figure E.20 – Time gating of SS burst signal2	64
Figure E.21 – Representation of the channel bandwidth (CBW)2	64
Figure E.22 – An example for one port CSI-RS beam design2	67
Figure E.23 – Plan view representation of statistical conservative model2	73
Figure E.24 – Binomial cumulative probability function for <i>N</i> = 24, PR = 0,1252	81
Figure E.25 – Binomial cumulative probability function for <i>N</i> = 18, PR = 2/72	81
Figure E.26 – Binomial cumulative probability function for <i>N</i> = 100, PR = 0,1252	85
Figure E.27 – Binomial cumulative probability function for <i>N</i> = 82, PR = 2/72	85
Figure F.1 – Limits for brief exposure ($t < 360$ s), seeTable F.1, divided by the corresponding time interval t and normalized with the value obtained for t up to 360 s2	89
Figure F.2 – F_{PR} as a function of the pulse duration assuming a whole-body averaging time of 30 min	.93
Figure F.3 – F_{PR} as a function of the pulse duration assuming an averaging time of 6 min	93
Figure G.1 – Examples of general assessment schemes2	97
Figure G.2 – Target uncertainty scheme overview	98
Figure G.3 – Probability of the true value being above (respectively below) the evaluated value depending on the confidence level assuming a normal distribution	02
Figure G.4 – Plot of the calibration factors for E (not E^2) provided from an example calibration report for an electric field probe	05
Figure G.5 – Computational model used for the variational analysis of reflected RF fields from the front of a surveyor	11
Figure G.6 – EUT positioning equipment and different positioning errors	17

Figure G.7 – Physical model of small-scale fading variations	320
Figure G.8 – Example of E-field strength variations in line of sight of an antenna	
operating at 2,2 GHz	320
Figure G.9 – Error at 95 % on average power estimation	321
Figure G.10 – 343 measurement points building a cube (centre) and different templates consisting of a different number of positions	323
Figure G.11 – Moving a template (Line 3) through the cube	324
Figure G.12 – Standard deviations for GSM 900, DCS 1800 and UMTS	326
Figure G.13 – Simulation arrangement	328
Figure G.14 – Body influence	328
Figure G.15 – Simulation arrangement	329
Table 1 – Quick start guide evaluation steps	41
Table 2 – Example of product installation classes where a simplified evaluation process is applicable (based on ICNIRP general public limits [1] and [2])	57
Table 3 – Exposure metrics validity for evaluation points in each source region	71
Table 4 – Requirements for RF field strength and power density measurements	73
Table 5 – Whole-body SAR exclusions based on RF power levels	73
Table 6 – Requirements for SAR measurements	74
Table 7 – Applicability of computation methods for source-environment regions of Figure 16	75
Table 8 – Requirements for computation methods	75
Table A.1 – Definition of source regions	86
Table A.2 – Default source region boundaries	86
Table A.3 – Source region boundaries for antennas with maximum dimension less than 2.5 λ	87
Table A.4 – Source region boundaries for linear/planar antenna arrays with a maximum dimension greater than or equal to 2,5 λ	87
Table A.5 – Source region boundaries for equiphase radiation aperture (e.g. dish) antennas with maximum reflector dimension much greater than a wavelength	88
Table A.6 – Source region boundaries for radiating cables	88
Table A.7 – Far-field distance r measured in metres as a function of angle β	90
Table A.8 – Guidance on selecting between computation and measurement approaches	91
Table A.9 – Guidance on selecting between broadband and frequency selective measurement	92
Table A.10 – Guidance on selecting RF field strength measurement procedures	93
Table A.11 – Guidance on selecting computation methods	94
Table A.12 – Guidance on specific evaluation method ranking	95
Table B.1 – Dimension variables	97
Table B.2 – RF power variables	97
Table B.3 – Antenna variables	98
Table B.4 – Exposure metric variables	98
Table B.5 – Broadband measurement system minimum requirements	111
Table B.6 – Frequency selective measurement system minimum requirements	112

– 12 –

Table B.7 – Example template for estimating the expanded uncertainty of an in-situ RF field strength measurement that used a frequency selective equipment	132
Table B.8 – Example template for estimating the expanded uncertainty of an in-situ RF field strength measurement that used a broadband equipment	133
Table B.9 – Example template for estimating the expanded uncertainty of a laboratory- based RF field strength or power density measurement using the surface scanning method	134
Table B.10 – Example template for estimating the expanded uncertainty of a laboratory-based RF field strength or power density measurement using the volume scanning method	135
Table B.11 – Numerical reference SAR values for reference dipoles and flat phantom – All values are normalized to a forward power of 1 W	140
Table B.12 – Phantom liquid volume and measurement volume used for whole-body SAR measurements [61], [77]	143
Table B.13 – Correction factor to compensate for a possible bias in the obtained general public whole-body SAR when assessed using the large box-shaped phantom for child exposure configurations [72]	143
Table B.14 – Measurement uncertainty evaluation template for EUT whole-body SAR test 144	
Table B.15 – Measurement uncertainty evaluation template for whole-body SAR system validation	145
Table B.16 – Definition of boundaries for selecting the zone of computation	149
Table B.17 – Input parameters for cylindrical and spherical formulas validation	152
Table B.18 – Applicability of SAR estimation formulas	154
Table B.19 – Calculation of A(f, d)	157
Table B.20 – Antenna parameters for SAR estimation formulas verification	159
Table B.21 – Verification data for SAR estimation formulas – front	159
Table B.22 – Verification data for SAR estimation formulas – axial and back	159
Table B.23 – Example template for estimating the expanded uncertainty of a syntheticmodel and ray tracing RF field strength computation	168
Table B.24 – Synthetic model and ray tracing power density reference results	171
Table B.25 – Example template for estimating the expanded uncertainty of a full waveRF field strength / power density computation	176
Table B.26 – Validation 1 full wave field reference results	178
Table B.27 – Validation 2 full wave field reference results	179
Table B.28 – Example template for estimating the expanded uncertainty of a full wave SAR computation	183
Table B.29 – Validation reference SAR results for computation method	185
Table B.30 – Relevant parameters for performing RF exposure modelling studies of a massive MIMO site or site cluster	195
Table B.31 – Measurement campaign parameters for performing RF exposureassessment of a massive MIMO site or site cluster	197
Table B.32 – Power combination factors applicable to the normalized actualtransmitted power CDF in case of combination of multiple independent identicaltransmitters	199
Table B.33 – Power combination factors applicable to two independent transmitters with a ratio p in amplitude	200
Table C.1 – Relative difference between the measured averaged transmitted power and actual power counter value for systems that allow direct power level measurements	204

IEC 62232:2

IEC 62232:2022 © IEC 2022

Table C.2 – Correlation between the configured maximum power level and the level reported by actual power counters for BS that allow direct power level measurements	205
Table C.3 – Correlation between the configured time-averaged load levels and the actual power counter value for systems that allow direct power level measurements	205
Table C.4 – Relative difference between the configured maximum power, measured averaged transmitted power, and actual power counters for systems that do not support direct power level measurements	206
Table C.5 – Correlation between the configured power level and the level reported by power counters for BS that do not support direct power level measurements	207
Table C.6 – Correlation between time linearity of the configured maximum power level and the level reported by actual power counters for BS that do not support direct power level measurements	209
Table E.1 – Technology specific information	234
Table E.2 – Example of spectrum analyser settings for an integration per service	239
Table E.3 – Example constant power components for specific TDMA/FDMA technologies	240
Table E.4 – WCDMA decoder characteristics	242
Table E.5 – Signal configurations	242
Table E.6 – WCDMA generator setting for power linearity	243
Table E.7 – WCDMA generator setting for decoder calibration	243
Table E.8 – WCDMA generator setting for reflection coefficient measurement	244
Table E.9 – Uplink-downlink configurations	252
Table E.10 – Theoretical extrapolation factor, N_{RS} , based on frame structure given in 3GPP TS 36.104 [21]	253
Table E.11 – F_{BW} for each combination of BS channel bandwidth and SSB subcarrier	
spacing (SCS) for sub-6 GHz signals	259
Table E.12 – F_{BW} for each combination of BS channel bandwidth and SSB subcarrier	
spacing (SCS) for mm-wave signals	260
Table E.13 – List of variables in the case study	284
Table F.1 – Brief exposure limits for the general public integrated over intervals of between 0 min and 6 min as specified by ICNIRP-2020 [1]	289
Table F.2 – Minimum F_{PR} , F_{PR} min, for which compliance with the time-averaged whole-body limits ICNIRP-2020 [1] inherently ensures compliance with the brief	203
Table G 1 – Determining target uncertainty	208
Table G.2 – Monte Carlo simulation of 10 000 trials, both surveyor and auditor using	
best estimate	300
Table G.3 – Monte Carlo simulation of 10 000 trials, both surveyor and auditor usingtarget uncertainty of 4 dB	300
Table G.4 – Monte Carlo simulation of 10 000 trials where surveyor uses upper95 % CI and auditor uses lower 95 % CI	301
Table G.5 – Guidance on minimum separation distances for some dipole lengths such that the uncertainty does not exceed 5 % or 10 % in a measurement of E	309
Table G.6 – Guidance on minimum separation distances for some loop diameters such that the uncertainty does not exceed 5 % or 10 % in a measurement of H	309
Table G.7 – Example minimum separation conditions for selected dipole lengths for 10 % uncertainty in E	310
Table G.8 – Standard estimates of dB variation for the perturbations in front of a surveyor due to body reflected fields as described in Figure G.5	312

- 14 -

Table G.9 – Standard uncertainty (u) estimates for E and H due to body reflections from the surveyor for common radio services derived from estimates provided in Table G.8	312
Table G.10 – Maximum sensitivity coefficients for liquid permittivity and conductivity over the frequency range 300 MHz to 6 GHz.	319
Table G.11 – Uncertainty at 95 % for different fading models	322
Table G.12 – Correlation coefficients for GSM 900 and DCS 1800	325
Table G.13 – Variations of the standard deviations for the GSM 900, DCS 1800 and UMTS frequency bands	326
Table G.14 – Examples of total uncertainty calculation	327
Table G.15 – Maximum simulated error due to the influence of a human body on themeasurement values of an omnidirectional probe	329
Table G.16 – Measured influence of a human body on omnidirectional probe measurements	329

– 16 –

INTERNATIONAL ELECTROTECHNICAL COMMISSION

DETERMINATION OF RF FIELD STRENGTH, POWER DENSITY AND SAR IN THE VICINITY OF BASE STATIONS FOR THE PURPOSE OF EVALUATING HUMAN EXPOSURE

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

IEC 62232 has been prepared by IEC technical committee 106: Methods for the assessment of electric, magnetic and electromagnetic fields associated with human exposure. It is an International Standard.

This third edition cancels and replaces the second edition published in 2017. This edition constitutes a technical revision.

This edition includes the following significant technical changes with respect to the previous edition:

- a) increased frequency range, from 110 MHz to 300 GHz (including consideration of ambient sources from 100 kHz to 300 GHz);
- b) specification of assessment procedures based on the actual maximum approach including methods for the validation of monitoring counter and control features;
- c) introduction of assessment methods relevant to 5G technologies and BS using beamsteering such as massive MIMO systems;
- d) clarification of criteria for exposure from multiple sources;

– 17 –

- e) restructuring of Annex B (Evaluation methods) for better readability;
- f) update of the requirements and procedures for power density measurements in laboratory conditions;
- g) update of simplified assessment formulas for dish antennas used in radio relays and microwave links;
- h) compatibility with ICNIRP-2020 [1]¹ exposure limits.

This document contains attached files that are cited in Figure B.30 and G.4.4.3. These files can be downloaded from https://www.iec.ch/tc106/supportingdocuments.

The text of this International Standard is based on the following documents:

Draft	Report on voting
106/576/FDIS	106/590/RVD

Full information on the voting for its approval can be found in the report on voting indicated in the above table.

The language used for the development of this International Standard is English.

This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are described in greater detail at http://www.iec.ch/standardsdev/publications.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under webstore.iec.ch in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

IMPORTANT – The "colour inside" logo on the cover page of this document indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

¹ Numbers in square brackets refer to the Bibliography.

– 18 –

IEC 62232:2022 © IEC 2022

INTRODUCTION

This document addresses the evaluation of RF field strength, power density and specific absorption rate (SAR) levels in the vicinity of base stations (BS), also called products or equipment under test (EUT), intentionally radiating in the radio frequency (RF) range 110 MHz to 300 GHz in accordance with the scope, see Clause 1. It does not address the evaluation of current density.

RF exposure evaluation methods to be used for product compliance, product installation compliance and in-situ RF exposure assessments are specified in this document. Exposure limits are not specified in this document. The entity conducting RF exposure assessments refers to the set of exposure limits applicable where exposure takes place. Examples of applicable exposure limits considered in this document are provided in the Bibliography, for example ICNIRP-2020 [1], ICNIRP-1998 [2], IEEE Std C95.1[™]-2019 [3] and Safety Code 6 [4].

NOTE In this document, "ICNIRP" used without "-1998 or "-2020" applies to both [1] and [2].

This document is based on IEC 62232:2017 leveraging guidelines and lessons learned from the implementation guide IEC TR 62669:2019 [5]. In particular, it specifies how to implement the actual maximum approach.

Clause 2, Clause 3 and Clause 4 address normative references, terms and definitions, symbols, and abbreviated terms, respectively.

Clause 5 provides advice on how to use this document, including a quick-start guide.

Clause 6 describes the three main application areas of this document: RF exposure evaluation methods for product compliance, product installation compliance, and in-situ RF exposure assessments. It includes the key requirements for assessing RF exposure based on using the actual maximum approach. It also includes simplified criteria for putting BS into operation. Further details are provided in Annex C, Annex D and Annex E.

Clause 7 provides guidelines on how to select the evaluation method. Further details are provided in Annex A.

Clause 8 specifies the RF exposure evaluation methods to be used and refers to further details in Annex B, Annex C, Annex F and Annex H.

Clause 9 addresses the estimation of uncertainty and refers to Annex G and Annex H for further details.

Clause 10 describes reporting requirements for the evaluation or assessment.

Annexes and the bibliography are referenced extensively to provide useful clarifications or guidance.

Additional guidance can be found in IEC TR 62669:2019 [5], which includes a set of case studies providing practical examples of the application of this document.

– 19 –

DETERMINATION OF RF FIELD STRENGTH, POWER DENSITY AND SAR IN THE VICINITY OF BASE STATIONS FOR THE PURPOSE OF EVALUATING HUMAN EXPOSURE

1 Scope

This document provides methods for the determination of RF field strength, power density and specific absorption rate (SAR) in the vicinity of base stations (BS) for the purpose of evaluating human exposure.

This document:

- a) considers intentionally radiating BS which transmit on one or more antennas using one or more frequencies in the range 110 MHz to 300 GHz;
- b) considers the impact of ambient sources on RF exposure at least in the 100 kHz to 300 GHz frequency range;
- c) specifies the methods to be used for RF exposure evaluation for compliance assessment applications, namely:
 - product compliance determination of compliance boundary information for a BS product before it is placed on the market;
 - product installation compliance determination of the total RF exposure levels in accessible areas from a BS product and other relevant sources before the product is put into operation;
 - 3) in-situ RF exposure assessment measurement of in-situ RF exposure levels in the vicinity of a BS installation after the product has been taken into operation;
- d) specifies how to perform RF exposure assessment based on the actual maximum approach;
- e) describes several RF field strength, power density, and SAR measurement and computation methodologies with guidance on their applicability to address both the in-situ evaluation of installed BS and laboratory-based evaluations;
- f) describes how surveyors establish their specific evaluation procedures appropriate for their evaluation purpose;
- g) provides guidance on how to report, interpret and compare results from different evaluation methodologies and, where the evaluation purpose requires it, determine a justified decision against a limit value;
- h) provides methods for the RF exposure assessment of BS using time-varying beam-steering technologies such as new radio (NR) BS using massive multiple input multiple output (MIMO).

NOTE 1 Practical implementation case studies are provided as examples in the companion Technical Report IEC TR 62669:2019 [5].

NOTE 2 Although the current BS product types have been specified to operate up to 200 GHz (see, for example, [6] and [7]), the upper frequency of 300 GHz is consistent with applicable exposure limits.

NOTE 3 The lower frequency considered for ambient sources, 100 kHz, is derived from ICNIRP-1998 [2] and ICNIRP-2020 [1]. However, some applicable exposure guidelines require ambient fields to be evaluated as low as 3 kHz, e.g. Safety Code 6 [4] and IEEE Std C95.1-2019 [3].

NOTE 4 Specification of appropriate RF exposure mitigation measures such as signage, access control, and training are beyond the scope of this document. It is possible to refer to the applicable regulations or recommended practices on these topics.

NOTE 5 While this document is based on the current international consensus about the best engineering practice for assessing the compliance of RF exposure with the applicable exposure limits, it is possible that national regulatory agencies specify different requirements. The entity conducting an RF exposure assessment needs to be aware of the applicable regulations.

– 20 –

IEC 62232:2022 © IEC 2022

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC/IEEE 62209-1528, Human exposure to radio frequency fields from hand-held and bodymounted wireless communication devices – Human models, instrumentation, and procedures: Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-worn wireless communication devices (Frequency range of 4 MHz to 10 GHz)

IEC 62209-3, Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Part 3: Vector measurement-based systems (Frequency range of 600 MHz to 6 GHz)

IEC 62311, Assessment of electronic and electrical equipment related to human exposure restrictions for electromagnetic fields (0 Hz – 300 GHz)

IEC 62479, Assessment of the compliance of low power electronic and electrical apparatus with the basic restrictions related to human exposure to electromagnetic fields (10 MHz – 300 GHz)

IEC/IEEE 62704-1, Determining the peak spatial-average specific absorption rate (SAR) in the human body from wireless communications devices, 30 MHz to 6 GHz – Part 1: General requirements for using the finite difference time-domain (FDTD) method for SAR calculations

IEC/IEEE 62704-2, Determining the peak spatial-average specific absorption rate (SAR) in the human body from wireless communications devices, 30 MHz to 6 GHz – Part 2: Specific requirements for finite difference time domain (FDTD) modelling of exposure from vehicle mounted antennas

IEC/IEEE 62704-3, Determining the peak spatial-average specific absorption rate (SAR) in the human body from wireless communications devices, 30 MHz to 6 GHz – Part 3: Specific requirements for using the finite difference time domain (FDTD) method for SAR calculations of mobile phones

IEC/IEEE 62704-4, Recommended practise for determining the Peak Spatial Average Specific Absorption Rate (SAR) in the human body from wireless communications devices, 30 MHz – 6 GHz: General requirements for using the Finite-Element Method (FEM) for SAR calculations and specific requirements for modelling vehicle-mounted antennas and personal wireless devices

IEC/IEEE 63195-1, Measurement procedure for the assessment of power density of human exposure to radio frequency fields from wireless devices operating in close proximity to the head and body – Frequency range of 6 GHz to 300 GHz

IEC/IEEE 63195-2, Determining the power density of the electromagnetic field associated with human exposure to wireless devices operating in close proximity to the head and body using computational techniques, 6 GHz to 300 GHz

koniec náhľadu – text ďalej pokračuje v platenej verzii STN