STN	Náklady na životný cyklus (LCC) a hodnotenie životného cyklu (LCA) pre emisie CO₂ v potrubných systémoch z tvárnej liatiny	STN EN 17800
		13 8104

Life cycle cost (LCC) and life cycle assessment (LCA) for CO₂ emissions in ductile iron pipe systems

Táto norma obsahuje anglickú verziu európskej normy. This standard includes the English version of the European Standard.

Táto norma bola oznámená vo Vestníku ÚNMS SR Č. 03/23

Obsahuje: EN 17800:2022

136595

Úrad pre normalizáciu, metrológiu a skúšobníctvo Slovenskej republiky, 2023 Slovenská technická norma a technická normalizačná informácia je chránená zákonom č. 60/2018 Z. z. o technickej normalizácii.

EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM

EN 17800

December 2022

ICS 77.140.75; 91.140.60

English Version

Life cycle cost (LCC) and life cycle assessment (LCA) for CO₂ emissions in ductile iron pipe systems

Coût du cycle de vie (CCV) et analyse du cycle de vie (ACV) pour les émissions de CO_2 dans les systèmes de canalisations en fonte ductile

Lebenszykluskosten (LCC) und Lebenszyklusanalyse (LCA) der CO₂-Emissionen von Rohrsystemen für Rohrsysteme aus duktilem Eisen

This European Standard was approved by CEN on 28 November 2022.

CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Türkiye and United Kingdom.

EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels

Contents

Europ	ean foreword	4	
Introduction		5	
1	Scope	6	
2	Normative references	6	
3 3.1 3.2	Terms, definitions and abbreviated terms Terms and definitions Abbreviated terms	6	
4 4.1 4.2	Basic concept of life cycle cost (LCC) for ductile iron pipe systems Definition of life cycle cost Calculation method	9	
5 5.1 5.2 5.3 5.4	Breakdown of life cycle cost Acquisition cost Operation cost Maintenance cost End of life cost or revenue	12 13 13	
6 6.1 6.2	Basic concept of life cycle assessment (LCA) for ductile iron pipe systems Definition of CO_2 emissions impact Calculation method of CO_2 emissions	14	
7 7.1 7.2 7.3 7.4	Breakdown of CO ₂ emissions CO ₂ emissions at the acquisition stage CO ₂ emissions at the operation stage CO ₂ emissions at the maintenance stage CO ₂ emissions at end of life stage	15 15 16	
8 8.1 8.2 8.3 8.4 8.5	Key drivers for LCC and LCA evaluation General Reference service life (RSL) Functional unit (FU) Water leaks volume Failure rate	17 17 18 18	
9	Quality of data		
Annex	Annex A (informative) Pumping cost and CO ₂ emissions with pump operation		
A.1	Pumping cost	20	
A.2	Daily pumping energy	20	
A.3	Total head loss		
A.4	CO ₂ emissions with pump operation	22	
Annex B (informative) Scenarios of LCC and CO ₂ emissions with different DI pipelines23			
B.1	Scenarios of LCC	23	

B.2	Scenarios of CO ₂ emissions	24
Annex	C (informative) Water leaks and failure rate of ductile iron pipelines	25
C.1	water leaks evaluation	
C.2	Examples of failure rates	
C.2.1	General	25
C.2.2	Example in France	26
C.2.3	Example in Germany	26
C.2.4	Example in Spain	27
Annex	D (informative) Circular economy, LCC and CO ₂ emissions	28
D.1	General	28
D.2	Conservation of mechanical characteristics in time	28
D.3	Recyclability	
D.4	Worldwide scrap collecting	28
D.5	Optimum hydraulic conveyance capacity	29
D.6	Optimum pipe wall thickness	29
D.7	Preservation of soil	
Bibliog	graphy	30

European foreword

This document (EN 17800:2022) has been prepared by Technical Committee CEN/TC 203 "Cast iron pipes, fittings and their joints", the secretariat of which is held by AFNOR.

This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by June 2023, and conflicting national standards shall be withdrawn at the latest by June 2023.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN shall not be held responsible for identifying any or all such patent rights.

Any feedback and questions on this document should be directed to the users' national standards body. A complete listing of these bodies can be found on the CEN website.

According to the CEN-CENELEC Internal Regulations, the national standards organisations of the following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Türkiye and the United Kingdom.

Introduction

Studies on economic and environmental impacts are important for utility decision-makers as they seek to balance budget concerns over immediate and long-term needs across acquisition, operations, and maintenance, and planned end of life. For authorities and engineers designing pipeline systems, the life cycle cost (LCC) and live cycle assessment (LCA) serve as a tool to study various scenarios to determine the right solution for site-specific conditions and community values, as well as to provide the necessary data to support those decisions. Impacts on the circular economy should be taken into consideration too.

The intention of this document, dedicated to ductile iron pipe systems, is to define objective methodologies for LCC and LCA- carbon footprint, respectively, in order to support customers and users to optimize ductile iron pipe solutions with global cost evaluation, safety requirements and environmental criteria.

1 Scope

This document specifies the evaluation method of life cycle cost (LCC) and Life cycle assessment (LCA) of ductile iron pipes and fittings used for water applications and which are in compliance with EN 545.

LCC evaluation is based on concepts and methods developed in ISO 15686-5.

LCA evaluation is based on concepts and methods developed in ISO 15686-6, EN 15804:2012+A2:2019, EN ISO 14040 and EN ISO 14044.

In this document, LCA is limited to the evaluation of environmental impact due to CO_2 emissions associated with the consumption of natural resources or energy and waste disposal. The other categories of impacts are not in the scope of this document.

Informative annexes are included in this document as a compilation of references, consensual factors, and scenarios with different DI pipelines.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

EN 545:2010, Ductile iron pipes, fittings, accessories and their joints for water pipelines — Requirements and test methods

EN ISO 14044:2006¹, Environmental management — Life cycle assessment — Requirements and guidelines (ISO 14044:2006)

koniec náhľadu – text ďalej pokračuje v platenej verzii STN

¹ As impacted by EN ISO 14044:2006/A1:2018 and EN ISO 14044:2006/A2:2020.