| STN | Pevné ultrazvukové detektory úniku plynu
(UGLD)
Všeobecné požiadavky a skúšobné metódy | STN
EN 50724 | |-----|--|-----------------| | | | 33 2330 | Fixed Ultrasonic Gas Leak Detectors (UGLD) - General requirements and test methods Táto norma obsahuje anglickú verziu európskej normy. This standard includes the English version of the European Standard. Táto norma bola oznámená vo Vestníku ÚNMS SR č. 11/23 Obsahuje: EN 50724:2023 STN EN 50724: 2023 EUROPEAN STANDARD NORME EUROPÉENNE EN 50724 EUROPÄISCHE NORM September 2023 ICS 13.320 #### **English Version** # Fixed Ultrasonic Gas Leak Detectors (UGLD) - General requirements and test methods Détecteurs de fuites de gaz à ultrasons (DFGU) fixes -Exigences générales et méthodes d'essai Ortsfeste Ultraschall-Gasleckage-Detektoren (UGLD) -Allgemeine Anforderungen und Prüfverfahren This European Standard was approved by CENELEC on 2023-08-07. CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CENELEC member. This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CENELEC member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions. CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Türkiye and the United Kingdom. European Committee for Electrotechnical Standardization Comité Européen de Normalisation Electrotechnique Europäisches Komitee für Elektrotechnische Normung CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels | Contents | | | |----------------|--|----| | Europe | an foreword | 4 | | Introdu | oction | 4 | | 1 | Scope | 6 | | 2 | Normative references | | | | | | | 3
3.1 | Terms and definitions | | | 3.1 | Glossary Types of equipment | | | 3.3 | Sensors | | | 3.4 | Signals and alarms | | | 4 | General requirements | q | | 4.1 | Introduction | | | 4.2 | Design | | | 4.2.1 | General | | | 4.2.2 | Indication methods and devices | | | 4.2.3 | Alarm signal | | | 4.2.4 | Fault signals | | | 4.2.5
4.2.6 | Adjustments Battery-powered equipment | 11 | | 4.2.7 | Ultrasonic transmitter for use with separate control units | 12 | | 4.2.8 | Equipment using software and/or digital technologies | | | 4.3 | Labelling and marking | | | 4.4 | Instruction manual | | | 5 | Test methods | 11 | | 5
5.1 | Introduction | | | 5.2 | General requirements for tests | | | 5.2.1 | Samples and sequence of tests | | | 5.2.2 | Preparation of equipment before testing | | | 5.3 | Normal conditions for test | | | 5.3.1 | General | | | 5.3.2 | Test gas(es) | | | 5.3.3
5.3.4 | Power supply Temperature and humidity | | | 5.3.4
5.3.5 | Pressure | | | 5.3.6 | Rain | | | 5.3.7 | Ultrasonic background noise | | | 5.3.8 | Acclimation time | | | 5.3.9 | Orientation | | | 5.3.10 | Communications options | 17 | | 5.4 | Test methods and performance requirements | | | 5.4.1 | Test conditions | | | 5.4.2 | Unpowered storage | | | 5.4.3
5.4.4 | Calibration, adjustment and repeatabilityStability | | | 5.4.5 | Alarm set point(s) | | | 5.4.6 | Temperature | | | 5.4.7 | Vibration | | | 5.4.8 | Response point | | | 5.4.9 | Time to alarm | | | 5.4.10 | Battery capacity | | | 5 4 11 | Power supply variations | 23 | | E 4 40 | | 00 | |--------|---|----| | | Electromagnetic compatibility | | | 5.4.13 | Verification of software and digital components | 23 | | 5.4.14 | False alarm sources | 23 | | Annex | A (informative) Mass flow rate | 24 | | Annex | B (informative) Test sheet | 25 | | Annex | C (informative) Temperature and humidity dB corrections | 26 | | Annex | D (normative) Hole typical drawings | 27 | | Annex | E (informative) Calibration | 29 | | Annex | F (informative) Background noise generation | 31 | # **European foreword** This document (EN 50724:2023) has been prepared by CLC/TC 31 "Electrical apparatus for potentially explosive atmospheres". The following dates are fixed: | • | latest date by which this document has
to be implemented at national level by
publication of an identical national
standard or by endorsement | (dop) | 2024–08–07 | |---|--|-------|------------| | | | | | latest date by which the national standards conflicting with this document have to be withdrawn Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CENELEC shall not be held responsible for identifying any or all such patent rights. Any feedback and questions on this document should be directed to the users' national committee. A complete listing of these bodies can be found on the CENELEC website. ## Introduction Ultrasonic Gas Leak Detectors (UGLDs) are being increasingly appointed to quickly detect gas leaks from pressurized systems to complement the use of point or line of sight detectors. The UGLD detects the acoustic emission generated by the leak, which propagates omni-directionally at the speed of sound. The leak can be detected at some distance without the gas itself needing to reach the position of the sensor. The main reason for implementing UGLDs is to improve the response time to detect dangerous gas leaks and to improve the gas leak detection coverage with the addition of a complementary detection method that is not affected by air flow. In general terms, an UGLD functions by detecting the ultrasonic noise generated by gas escapes from a high-pressure area to a low-pressure area through a small aperture (leak). In practice the technique is of value for detecting leaks from tank/pipelines, etc running at pressures greater than 2 bar. The intensity of this airborne ultrasound generated by a gas leak is due to a number of factors including but not limited to gas type, gas pressure, leak size and gas temperature. An UGLD does not detect specific gas types, measure percentage LFL or ppm concentration level, but instead responds to the specific ultrasonic sound generated by a pressurized gas leak. The reliable range coverage of an UGLD is mainly determined by the leak rate of the gas leak, the atmospheric transmission of the ultrasound, and the potential acoustic background noise that can interfere with the UGLD. The leak rate is mainly determined by gas pressure and leak size, but molecular weight and gas temperature also plays a role. The leak rate determines how fast a potentially dangerous gas cloud will be generated. In addition, physical obstructions between the location of the leak, and the UGLD will also have an influence on the detection range of the detector. ## 1 Scope This document refers to UGLDs (ultrasonic gas leak detectors) that work in a frequency beyond the audible range. This document is applicable to fixed ultrasonic gas leak detection equipment intended to provide an indication, alarm or other output function for the purpose of initiating automatic or manual protective action(s). This document specifies general requirements for design, testing and performance, and describes test methods that apply to UGLD. The following items are considered in this document: - Leak rates to be used to verify the detection range of UGLD, - Test gas to be used (nitrogen or compressed air), - Nozzle shape and size used at all tests leak rate tests, - Gas pressure used at all leak rate tests, - Time duration of each leak rate test, - Test leak nozzle height from solid ground, - Test leak nozzle angling relative to test UGLD, - UGLD angle relative to the leak (field of coverage of the UGLD), - Wind speed and direction, air temperature and humidity at day of test, - Minimum distance to solid structures (walls, etc.) at test site, - Installation height relative to the ground, - Texture of solid ground between leak and UGLD, - Background noise sources, known to interfere with UGLDs, - Specification of detection radius in 3 dimensions, - Operational requirements such as temperature, vibration, etc. This document is also applicable when an equipment manufacturer makes any claims regarding any special features of construction or superior performance that exceed the minimum requirements of this document. This document prescribes that all such claims are verified, and that the test procedures are extended or supplemented, where necessary, to verify the claimed performance. The additional tests are agreed between the manufacturer and test laboratory and identified and described in the test report. This document does not apply to portable gas detectors using ultrasonic measurements nor to gas detectors using non-ultrasonic measurements to detect a gas leak. #### 2 Normative references The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. EN IEC 61326-1, Electrical equipment for measurement, control and laboratory use - EMC requirements - Part 1: General requirements EN 50271:2018, Electrical apparatus for the detection and measurement of combustible gases, toxic gases or oxygen - Requirements and tests for apparatus using software and/or digital technologies IEC 60068-2-6, Environmental testing - Part 2-6: Tests - Test Fc: Vibration (sinusoidal) koniec náhľadu – text ďalej pokračuje v platenej verzii STN