

Dráhové aplikácie Technické parametre systémov na detekciu vlaku na účely interoperability transeurópskeho železničného systému Časť 2: Počítače náprav

STN EN 50617-2

34 2614

Railway applications - Technical parameters of train detection systems for the interoperability of the trans-European railway system - Part 2: Axle counters

Táto norma obsahuje anglickú verziu európskej normy. This standard includes the English version of the European Standard.

Táto norma bola oznámená vo Vestníku ÚNMS SR č. 11/24

Obsahuje: EN 50617-2:2024

Oznámením tejto normy sa od 23.09.2027 ruší STN EN 50617-2 (34 2614) z januára 2016

EUROPEAN STANDARD NORME EUROPÉENNE FUROPÄISCHE NORM EN 50617-2

October 2024

ICS 29.280

Supersedes EN 50617-2:2015; EN 50617-2:2015/AC:2016

English Version

Railway applications - Technical parameters of train detection systems for the interoperability of the trans-European railway system - Part 2: Axle counters

Applications ferroviaires - Paramètres techniques des systèmes de détection des trains pour l'interopérabilité du système ferroviaire transeuropéen - Partie 2 : Compteurs d'essieux Bahnanwendungen - Technische Parameter von Gleisfreimeldesystemen für die Interoperabilität des transeuropäischen Eisenbahnsystems - Teil 2: Achszähler

This European Standard was approved by CENELEC on 2024-09-23. CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.

Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CENELEC member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CENELEC member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.

CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Türkiye and the United Kingdom.

European Committee for Electrotechnical Standardization Comité Européen de Normalisation Electrotechnique Europäisches Komitee für Elektrotechnische Normung

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels

Con	contents	
Europ	pean foreword	5
Introd	duction	6
1	Scope	7
2	Normative references	7
3	Terms, definitions and abbreviations	8
3.1	Terms and definitions	8
3.2	Abbreviations	
4	Description of train detection system	10
5	Safety relevance per parameter	11
6	Axle counter system parameters	12
6.1	RAMS	12
6.1.1	General	12
6.1.2	Reliability	12
6.1.3	Availability	12
6.1.4	Rate of miscounts	13
6.1.5	Maintainability	13
6.1.6	Safety	14
6.2	Immunity against magnetic fields – in-band and out-of-band	15
6.2.1	General	15
6.2.2	Derivation of immunity requirements	15
6.2.3	Immunity levels for axle counters / Compatibility margins	15
6.2.4	Frequency range of an ACD	16
6.3	Immunity to traction and short circuit current in the rail	16
6.4	Immunity to harmonics of traction current in the rail	17
6.5	Sensor position integrity control (functional parameter)	17
6.6	Integration time	17
6.6.1	General	17
6.6.2	Product specific integration time	17
6.6.3	Derivation of the integration time – Example	18
6.7	Signalling power supply quality with respect to availability	20
6.8	Requirements on the connection cables	20
7	Requirements for axle counter systems based on train parameters	21
7.1	General	21
7.2	Vehicle, wheel and speed dependent parameters	21
704	Comparel	24

7.2.2	Wheel parameters	22
7.2.3	Vehicle and speed depending parameters	23
7.3	Material properties of vehicle parts in the detection area (metal free space)	24
7.4	Sinusoidal sway of train	24
7.5	Magnetic track brakes and eddy current brakes	25
8	Track based parameters	25
8.1	Material of sleepers	25
8.2	Rail fittings/mounting area	26
8.3	Slab track	26
8.4	Other rails installations	27
9	Environmental and other parameters	27
9.1	General	27
9.2	Pressure	27
9.3	Movement of surrounding air	27
9.4	Ambient temperatures	28
9.4.1	General	28
9.4.2	Ambient temperature for axle counter evaluator equipment	28
9.4.3	Ambient temperature for ACD (without axle counter sensor)	28
9.4.4	Ambient temperature for axle counter sensor	29
9.5	Humidity	29
9.6	Precipitation	29
9.7	Protection Level (IP)	29
9.7.1	General	29
9.7.2	For components on the rail	29
9.7.3	Components on the track / near the track	30
9.8	Solar radiation	30
9.9	Overvoltage protection (incl. indirect lightning effects)	30
9.10	Pollution	30
9.11	Fire protection	30
9.12	Vibrations / shock	30
9.13	EMC	30
9.13.1	General	30
9.13.2	Requirement and validation for EMC	31
9.14	Definition of Influence from other components	31
Annex	A (informative) Design guide for measurement antennas	32
Annex	B (normative) Frequency management (reproduced from ERA/ERTMS/033281)	34
Annex	C (normative) Test equipment, test methodologies and reports to be performed	36
Annex	D (informative) Intermodulation effects	52
Bibliog	ıraphy	55

Figures

Figure 1 — System boundary of an axie counter system	TT
Figure 2 — Correlation between hazard rate and time between trains	14
Figure 3 — Areas for evaluation	16
Figure 4 — Immunity versus duration of interference field	18
Figure 5 — ACD immunity as a function of time duration of in-band disturbance	19
Figure 6 — Filter curves measured and calculated	20
Figure 7 — Definition of the parameters	22
Figure 8 — Axle to axle distance	23
Figure 9 — Parameters influencing the sinusoidal sway	25
Figure A.1 — Side view (Y and Z coils, dimensions 50 mm to 150 mm)	32
Figure B.1 — Areas for evaluation	35
Figure C.1 — Homogenity of field generation antenna (FGA)	37
Figure C.2 — ACD, schematic diagram	38
Figure C.3 — Test set-up for homogeneous fields in X-Z-direction (front view for α = 0°)	39
Figure C.4 — Test set-up for homogeneous fields in X-Z-direction (side view for α = 0°)	39
Figure C.5 — Test set-up for homogeneous fields in Y-Z-direction (front view)	39
Figure C.6 — Test set-up for homogeneous fields in Y-Z-direction (side view for α = 0°)	40
Figure C.7 — ACD response to intermittent sinusoidal waves	41
Figure C.8 — Test set-up for rail current tests	44
Figure C.9 — Frequency mask	46
Figure C.10 — Influence zones of magnetic fields	47
Figure C.11 — Test setup	48
Figure C.12 — Test set-up for conducted immunity testing	49
Figure D.1 — Frequency management and amplitude masks	52
Figure D.2 — Lab test set up to derive saturation behaviour regarding multi-tone signals	53
Figure D.3 — Trackside test setup	53
Figure D.4 — Illustration of intermodulation effect	54
Tables	
Table 1 — Overview of safety relevance in the subclauses	
Table B.1 — Emission limits and evaluation parameters (narrow band)	
Table B.2 — Increased magnetic field limits	35

European foreword

This document (EN 50617-2:2024) has been prepared by CLC/SC 9XA "Communication, signalling and processing systems" of CLC/TC 9X "Electrical and electronic applications for railways".

The following dates are fixed:

- latest date by which this document has to be (dop) 2025-09-23 implemented at national level by publication of an identical national standard or by endorsement
- latest date by which the national standards (dow) 2027-09-23 conflicting with this document have to be withdrawn

This document supersedes EN 50617-2:2015 and all of its amendments and corrigenda (if any).

EN 50617-2:2024 includes the following significant technical changes with respect to EN 50617-2:2015:

 Annex D: new informative annex for intermodulation effects potentially affecting the compatibility limits for Rolling Stock

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CENELEC shall not be held responsible for identifying any or all such patent rights.

This document is Part 2 of the EN 50617 series, which consists of the following parts under the common title "Railway Applications - Technical parameters of train detection systems":

- Part 1: Track circuits;
- Part 2: Axle counters.

Any feedback and questions on this document should be directed to the users' national committee. A complete listing of these bodies can be found on the CENELEC website.

Introduction

The working group SC9XA WGA4-2 has developed the limits for electromagnetic compatibility between rolling stock and individual train detection systems, specifically track circuits and axle counter systems and correspondingly published two technical specifications CLC/TS 50238-2 and CLC/TS 50238-3. These limits and associated measurement methods are based on preferred existing systems (as defined in CLC/TS 50238-2 and CLC/TS 50238-3) which are well established and still put forward for signalling renewals by infrastructure managers.

To meet the requirements for compatibility between train detection systems and rolling stock in the future and to achieve interoperability and free movement within the European Union, ERA/ERTMS/033281 defines the relevant parameters for compatibility of rolling stock with track circuits and axle counter systems.

The train detection systems, track circuits and axle counters are an integral part of the CCS trackside subsystem in the context of the Rail Interoperability Directive. The relevant technical parameters are enumerated in the CCS and LOC&PAS TSI and ERA/ERTMS/033281. ERA/ERTMS/033281 specifies the relevant parameters for rolling stock for compatibility with the infrastructure. This document covers all relevant technical parameters of train detection systems (axle counter) in a manner that provides a presumption of conformity with interoperability requirements, but is not limited to interoperable lines. This document refers whenever needed to ERA/ERTMS/033281. Although the demand for FrM is driven by Interoperability requirements, it is independent from the drive to introduce systems like ERTMS level 3 or level 2.

This document is based on the current understanding of the railway experts represented at WGA4-2 that track circuits and axle counter systems will continue to be the essential two train detection systems for the foreseeable future.

The published specification EN 50592 can be used to ascertain conformity of rolling stock with the FrM presented in ERA/ERTMS/033281.

The published specification CLC/TS 50238-3 can be used to ascertain conformity of rolling stock with existing individual axle counter detectors.

In this document, the defined parameters are structured and allocated according to their basic references as follows:

- axle counter system parameters;
- train based parameters;
- track based parameters;
- environmental and other parameters.

Where possible, the parameters as defined are consistent with other European Standards.

Each parameter is defined by a short general description, the definition of the requirement, the relation to other standards and a procedure to show the fulfilment of the requirement as far as necessary. An overview of the safety relevance of each parameter is given – in the context of this document – in a separate table.

1 Scope

This document specifies parameters for the design and usage of axle counter systems.

For this, this document specifies the technical parameters of axle counter systems associated with the magnetic field limits for RST in the context of interoperability. In addition, test methods are defined for establishing the conformity and the performance of an axle counter detector.

This document is intended to be used to assess compliance of axle counter systems and other forms of wheel sensors used for train detection, in the context of the European Directive on the interoperability of the trans-European railway system and the associated technical specification for interoperability relating to the control-command and signalling track-side subsystems.

This document can also be used for axle counter systems installed on lines which are not declared as interoperable (including metro and tram lines).

For wheel sensors and wheel detectors in other applications than axle counters but using the same sensors on the rail and detection circuits, transient and continuous interference can be considered as equivalent to axle counter detectors or axle counter sensors.

Under interoperability, the frequency bands and rolling stock emission limits are currently defined in the axle counter FrM as specified in the ERA/ERTMS/033281 document.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

EN 16432-1:2017, Railway applications - Ballastless track systems - Part 1: General requirements

EN 50121-4:2016, Railway applications - Electromagnetic compatibility - Part 4: Emission and immunity of the signalling and telecommunications apparatus

EN 50124-2:2017, Railway applications - Insulation coordination - Part 2: Overvoltages and related protection

EN 50125-3:2003, Railway applications - Environmental conditions for equipment - Part 3: Equipment for signalling and telecommunications

EN 50126-1:2017, Railway Applications - The Specification and Demonstration of Reliability, Availability, Maintainability and Safety (RAMS) - Part 1: Generic RAMS Process

EN 50126-2:2017, Railway Applications - The Specification and Demonstration of Reliability, Availability, Maintainability and Safety (RAMS) - Part 2: Systems Approach to Safety

EN 50128:2011, Railway applications - Communication, signalling and processing systems - Software for railway control and protection systems

EN 50129:2018, Railway applications - Communication, signalling and processing systems - Safety related electronic systems for signalling

EN 50592:2016, Railway applications - Testing of rolling stock for electromagnetic compatibility with axle counters

EN 60068-2-1:2007, Environmental testing - Part 2-1: Tests - Test A: Cold (IEC 60068-2-1:2007)

EN 60068-2-2:2007, Environmental testing - Part 2-2: Tests - Test B: Dry heat (IEC 60068-2-2:2007)

EN 60068-2-30:2005, *Environmental testing - Part 2-30: Tests - Test Db: Damp heat, cyclic (12 h + 12 h cycle) (IEC 60068-2-30:2005)*

EN 60529:1991, Degrees of protection provided by enclosures (IP Code) (IEC 60529)

EN 61000-4-6:2014, Electromagnetic compatibility (EMC) - Part 4-6: Testing and measurement techniques - Immunity to conducted disturbances, induced by radio-frequency fields (IEC 61000-4-6:2013)

ERA/ERTMS/033281, Interfaces between control-command and signalling trackside and other subsystems

koniec náhľadu – text ďalej pokračuje v platenej verzii STN

-

 $^{^1}$ As impacted by EN 60529:1991/A1:2000, EN 60529:1991/A2:2013, EN 60529:1991/AC:2016-12 and EN 60529:1991/A2:2013/AC:2019-02,