

STN P	Usmernenie na vykonávanie hodnotenia rizika pri navrhovaní zariadení LNG na pevnine vrátane rozhrania medzi lod'ou a pevninou (ISO/TS 16901: 2022)	STN P CEN ISO/TS 16901
		38 6646

Guidance on performing risk assessment in the design of onshore LNG installations including the ship/shore interface (ISO/TS 16901:2022)

Táto norma obsahuje anglickú verziu európskej normy.
This standard includes the English version of the European Standard.

Táto norma bola oznámená vo Vestníku ÚNMS SR č. 08/25

Táto predbežná slovenská technická norma je určená na overenie. Prípadné pripomienky pošlite do mája 2027 Úradu pre normalizáciu, metrológiu a skúšobníctvo Slovenskej republiky.

Obsahuje: CEN ISO/TS 16901:2025, ISO/TS 16901:2022

140787

TECHNICAL SPECIFICATION
SPÉCIFICATION TECHNIQUE
TECHNISCHE SPEZIFIKATION

CEN ISO/TS 16901

May 2025

ICS 75.180.01

English Version

**Guidance on performing risk assessment in the design of
onshore LNG installations including the ship/shore
interface (ISO/TS 16901:2022)**

Recommandations sur l'appréciation du risque dans la
conception d'installations terrestres pour le GNL en
incluant l'interface terre/navire (ISO/TS 16901:2022)

Leitfaden zur Durchführung von Risikobewertungen
bei der Planung von LNG-Anlagen an Land,
einschließlich der Schnittstelle zwischen Schiff und
Land (ISO/TS 16901:2022)

This Technical Specification (CEN/TS) was approved by CEN on 11 May 2025 for provisional application.

The period of validity of this CEN/TS is limited initially to three years. After two years the members of CEN will be requested to submit their comments, particularly on the question whether the CEN/TS can be converted into a European Standard.

CEN members are required to announce the existence of this CEN/TS in the same way as for an EN and to make the CEN/TS available promptly at national level in an appropriate form. It is permissible to keep conflicting national standards in force (in parallel to the CEN/TS) until the final decision about the possible conversion of the CEN/TS into an EN is reached.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Türkiye and United Kingdom.

EUROPEAN COMMITTEE FOR STANDARDIZATION
COMITÉ EUROPÉEN DE NORMALISATION
EUROPÄISCHES KOMITEE FÜR NORMUNG

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels

Contents

Page

European foreword.....	3
-------------------------------	----------

European foreword

The text of ISO/TS 16901:2022 has been prepared by Technical Committee ISO/TC 67 "Oil and gas industries including lower carbon energy" of the International Organization for Standardization (ISO) and has been taken over as CEN ISO/TS 16901:2025 by Technical Committee CEN/TC 282 "Installation and equipment for LNG" the secretariat of which is held by AFNOR.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN shall not be held responsible for identifying any or all such patent rights.

Any feedback and questions on this document should be directed to the users' national standards body. A complete listing of these bodies can be found on the CEN website.

According to the CEN-CENELEC Internal Regulations, the national standards organizations of the following countries are bound to announce this Technical Specification: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Türkiye and the United Kingdom.

Endorsement notice

The text of ISO/TS 16901:2022 has been approved by CEN as CEN ISO/TS 16901:2025 without any modification.

TECHNICAL SPECIFICATION

**ISO/TS
16901**

Second edition
2022-12

Guidance on performing risk assessment in the design of onshore LNG installations including the ship/ shore interface

*Recommandations sur l'évaluation des risques dans la conception
d'installations terrestres pour le GNL en incluant l'interface terre/
navire*

Reference number
ISO/TS 16901:2022(E)

ISO/TS 16901:2022(E)**COPYRIGHT PROTECTED DOCUMENT**

© ISO 2022

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Email: copyright@iso.org
Website: www.iso.org

Published in Switzerland

Contents

	Page
Foreword	v
1 Scope	1
2 Normative references	1
3 Terms and definitions	1
4 Abbreviated terms	6
5 Safety risk management	8
5.1 Decision support framework for risk management	8
5.2 Prescriptive safety or risk performance	8
5.3 Risk assessment in relation to project development	9
6 Risk	11
6.1 What is risk	11
6.2 Safety philosophy and risk criteria	12
6.3 Risk control strategy	12
6.4 ALARP	12
6.5 Ways to express risk to people	13
6.5.1 General	13
6.5.2 Risk contours (RC)	14
6.5.3 Risk transects (RT)	14
6.5.4 Individual risk (IR)	14
6.5.5 Potential loss of life (PLL)	15
6.5.6 Fatal accident rate (FAR)	15
6.5.7 Cost to avert a fatality (CAF)	15
6.5.8 F/N curves (FN)	15
6.5.9 Uncertainties in QRA	15
7 Methodologies	16
7.1 Main steps of risk assessment	16
7.2 Qualitative risk analysis	16
7.2.1 HAZID	16
7.2.2 Failure mode and effect analysis (FMEA)	18
7.2.3 Risk matrix	18
7.2.4 Bow-tie	18
7.2.5 HAZOP	20
7.2.6 SIL analysis	21
7.3 Quantitative analysis: consequence and impact assessment	21
7.3.1 General	21
7.3.2 Consequence assessment	22
7.3.3 Impact assessment	24
7.4 Quantitative analysis: frequency assessment	25
7.4.1 General	25
7.4.2 Failure data	25
7.4.3 Consensus data	25
7.4.4 FAULT tree	26
7.4.5 Event tree analysis (ETA)	26
7.4.6 Exceedance curves based on probabilistic simulations	26
7.5 Risk assessments (consequence*frequency)	27
7.5.1 Risk assessment tools	27
7.5.2 Ad hoc developed risk assessment tools	27
7.5.3 Proprietary risk assessment tools	28
8 Accident scenarios	29
8.1 Overview accident scenarios	29
8.2 LNG import facilities including SIMOPS	29
8.3 LNG export facilities	31

ISO/TS 16901:2022(E)

9	Standard presentation of risk	33
Annex A (informative)	Impact criteria	34
Annex B (informative)	Chain of events following release scenarios	53
Bibliography		57

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 67, *Oil and gas industries including lower carbon energy*, Subcommittee SC 9, *Production, transport and storage facilities for cryogenic liquefied gases*.

This second edition cancels and replaces the first edition (ISO/TS 16901:2015), which has been technically revised.

The main changes are as follows:

- reference to IGF code added to the scope;
- references updated in [Clause 2](#) and the bibliography;
- definitions added for HSE critical activity and HSE critical element.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html.

Guidance on performing risk assessment in the design of onshore LNG installations including the ship/shore interface

1 Scope

This document provides a common approach and guidance to those undertaking assessment of the major safety hazards as part of the planning, design, and operation of LNG facilities onshore and at shoreline using risk-based methods and standards, to enable a safe design and operation of LNG facilities. The environmental risks associated with an LNG release are not addressed in this document.

This document is applicable both to export and import terminals but can be applicable to other facilities such as satellite and peak shaving plants.

This document is applicable to all facilities inside the perimeter of the terminal and all hazardous materials including LNG and associated products: LPG, pressurized natural gas, odorizers, and other flammable or hazardous products handled within the terminal.

The navigation risks and LNG tanker intrinsic operation risks are recognised, but they are not in the scope of this document. Hazards arising from interfaces between port and facility and ship are addressed and requirements are normally given by port authorities. It is assumed that LNG carriers are designed according to the IGC code, and that LNG fuelled vessels receiving bunker fuel are designed according to IGF code.

Border between port operation and LNG facility is when the ship/shore link (SSL) is established.

This document is not intended to specify acceptable levels of risk; however, examples of tolerable levels of risk are referenced.

See IEC 31010 and ISO 17776 with regard to general risk assessment methods, while this document focuses on the specific needs scenarios and practices within the LNG industry.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO Guide 73, *Risk management — Vocabulary*

koniec náhľadu – text ďalej pokračuje v platenej verzii STN