

Potrubné systémy z plastov na zásobovanie plynnými palivami
Potrubné systémy z nemäkčeného polyamidu (PA-U) s tavným spájaním a mechanickým spájaním
Časť 4: Armatúry
(ISO 16486-4: 2025)

STN EN ISO 16486-4

64 3064

Plastics piping systems for the supply of gaseous fuels - Unplasticized polyamide (PA-U) piping systems with fusion jointing and mechanical jointing - Part 4: Valves (ISO 16486-4:2025)

Táto norma obsahuje anglickú verziu európskej normy. This standard includes the English version of the European Standard.

Táto norma bola oznámená vo Vestníku ÚNMS SR č. 08/25

Obsahuje: EN ISO 16486-4:2025, ISO 16486-4:2025

Oznámením tejto normy sa ruší STN EN ISO 16486-4 (64 3064) z mája 2022

140941

EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM

EN ISO 16486-4

June 2025

ICS 75.200; 83.140.30

Supersedes EN ISO 16486-4:2022

English Version

Plastics piping systems for the supply of gaseous fuels -Unplasticized polyamide (PA-U) piping systems with fusion jointing and mechanical jointing - Part 4: Valves (ISO 16486-4:2025)

Systèmes de canalisations en matières plastiques pour la distribution de combustibles gazeux - Systèmes de canalisations en polyamide non plastifié (PA-U) avec assemblages par soudage et assemblages mécaniques - Partie 4: Robinets (ISO 16486-4:2025)

Kunststoff-Rohrleitungssysteme für die Gasversorgung
- Rohrleitungssysteme aus weichmacherfreiem
Polyamid (PA-U) mit Schweißverbindungen und
mechanischen Verbindungen - Teil 4: Armaturen (ISO
16486-4:2025)

This European Standard was approved by CEN on 2 June 2025.

CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Türkiye and United Kingdom.

EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels

EN ISO 16486-4:2025 (E)

Contents	Page
European ferenced	2
European foreword	3

European foreword

This document (EN ISO 16486-4:2025) has been prepared by Technical Committee ISO/TC 138 "Plastics pipes, fittings and valves for the transport of fluids" in collaboration with Technical Committee CEN/TC 155 "Plastics piping systems and ducting systems" the secretariat of which is held by NEN.

This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by December 2025, and conflicting national standards shall be withdrawn at the latest by December 2025.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN shall not be held responsible for identifying any or all such patent rights.

This document supersedes EN ISO 16486-4:2022.

Any feedback and questions on this document should be directed to the users' national standards body/national committee. A complete listing of these bodies can be found on the CEN website.

According to the CEN-CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Türkiye and the United Kingdom.

Endorsement notice

The text of ISO 16486-4:2025 has been approved by CEN as EN ISO 16486-4:2025 without any modification.

International Standard

ISO 16486-4

Third edition 2025-06

Plastics piping systems for the supply of gaseous fuels — Unplasticized polyamide (PA-U) piping systems with fusion jointing and mechanical jointing —

Part 4: Valves

Systèmes de canalisations en matières plastiques pour la distribution de combustibles gazeux — Systèmes de canalisations en polyamide non plastifié (PA-U) avec assemblages par soudage et assemblages mécaniques —

Partie 4: Robinets

COPYRIGHT PROTECTED DOCUMENT

© ISO 2025

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Email: copyright@iso.org Website: www.iso.org

Published in Switzerland

Coı	ntent	SS .	Page	
Fore	word		v	
Intr	oductio	on	vi	
1	Scop	ne	1	
2	Norr	native references	1	
3		Terms and definitions		
	3.1	General terms		
	3.2	Terms relating to design	3	
4	Sym	bols and abbreviated terms	3	
5	Material			
	5.1	Compound for valve body		
		5.1.1 Compound		
	F 2	5.1.2 Fusion compatibility		
	5.2	Material for non-polyamide parts 5.2.1 General		
		5.2.2 Components and elements		
		5.2.3 Metal parts		
		5.2.4 Elastomers	5	
		5.2.5 Greases and lubricants		
		5.2.6 Assembly	5	
6	Gene	eral characteristics		
	6.1	Appearance of the valve		
	6.2 6.3	Colour		
	0.3	Design		
		6.3.2 Valve body		
		6.3.3 Valve terminal ends		
		6.3.4 Operating device		
		6.3.5 Seals	6	
7	Geor	netrical characteristics		
	7.1	General	_	
	7.2	Measurement of dimensions Dimensions of spigot ends for valves	6	
	7.3 7.4	Dimensions of spigot ends for valves		
	7.5	Dimensions of the operating device		
8	Mecl	hanical characteristics of assembled valves and regional requirements		
Ü	8.1	General		
	8.2	Conditioning	7	
	8.3	Requirements		
		8.3.1 General 8.3.2 Air flow rate		
	8.4	8.3.2 Air flow rate		
0				
9	Phys 9.1	sical characteristics		
	9.2	Requirement		
10		ormance requirements		
11		nical file		
12		king		
12	12.1	General		
	12.2			
	12.3			

13 Deliver	y conditions	16
Annex A (norr	native) Determination of the leaktightness of seat(s) and packing	17
Annex B (norn	native) Test method for leaktightness and ease of operation after tensile loading	19
Bibliography.		2 1

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

ISO draws attention to the possibility that the implementation of this document may involve the use of (a) patent(s). ISO takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, ISO had not received notice of (a) patent(s) which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at www.iso.org/patents. ISO shall not be held responsible for identifying any or all such patent rights.

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 138, *Plastics pipes, fittings and valves for the transport of fluids*, Subcommittee SC 7, *Valves and auxiliary equipment of plastics materials,* in collaboration with the European Committee for Standardization (CEN) Technical Committee CEN/TC 155, *Plastics piping systems and ducting systems,* in accordance with the Agreement on technical cooperation between ISO and CEN (Vienna Agreement).

This third edition cancels and replaces the second edition (ISO 16486-4:2022), which has been technically revised.

The main changes are as follows:

- references to information related to the suitability of PA-U piping systems for 100 % hydrogen and its admixtures with natural gas have been added;
- for the actuation mechanism resistance test, the elements given in the requirements were moved to the test parameters cells and 'no leakage' and 'no external leakage' were added in the requirements cells;
- the Bibliography has been updated and extended with additional references.

A list of all parts in the ISO 16486 series can be found on the ISO website.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html.

Introduction

This document specifies the requirements for valves used in a piping system made from unplasticized polyamide (PA-U) that is intended to be used for the supply of gaseous fuels.

General requirements for unplasticized polyamide (PA-U) materials used for a piping system and its components, intended for the supply of gaseous fuels, are specified in ISO 16486-1.

Requirements and test methods for pipes are specified in ISO 16486-2 and for fittings in ISO 16486-3.

Characteristics for fitness for purpose of the system and generic fusion parameters are specified in ISO 16486-5.

Recommended practice for installation is given in ISO 16486-6, which will not be implemented as a European standard under the Vienna Agreement.

NOTE 1 Recommended practice for installation is also given in CEN/TS 12007-6, which has been prepared by Technical Committee CEN/TC 234, *Gas infrastructure*.

Assessment of conformity of the system is given in ISO/TS 16486-7.

Training and assessment of fusion operators is covered by ISO/TS 16486-8.

NOTE 2 For CEN member countries, the recommended practice for installation is given in CEN/TS 12007-6 and the qualification of welders is given by EN 13067.5

ISO 16486-1, ISO 16486-2, ISO 16486-3, ISO 16486-5 and ISO 16486-6 as well as ISO/TS 16486-7 and ISO/TS 16486-8 have been prepared by ISO/TC 138/SC 4. ISO 16486-4 (this document) has been prepared by ISO/TC 138/SC 7.

NOTE 3 For conformance of components in CEN member countries, relevant EN standards can apply. Alternative standards can be applied in cases where suitable EN standard(s) do not exist.

The ISO 16486 series covers a range of maximum operating pressures and gives requirements concerning colours.

It is the responsibility of the purchaser or specifier to make the appropriate selections from these aspects, taking into consideration their particular requirements and any relevant national regulations and installation practices or codes.

Plastics piping systems for the supply of gaseous fuels — Unplasticized polyamide (PA-U) piping systems with fusion jointing and mechanical jointing —

Part 4:

Valves

1 Scope

This document specifies the characteristics of valves made from unplasticized polyamide (PA-U) in accordance with ISO 16486-1, intended to be buried and used for the supply of gaseous fuels.

NOTE 1 For the purpose of this document the term gaseous fuels include for example natural gas, methane, butane, propane, hydrogen, manufactured gas, biogas, and mixtures of these gases. Additional information about the suitability for 100 % hydrogen and its admixtures with natural gas is given by ISO 16486-1:2023, Annex C and Annex D.

It is applicable to isolating unidirectional and bi-directional valves with spigot ends or electrofusion sockets intended to be fused with PA-U pipes conforming to ISO 16486-2 and PA-U fittings conforming to ISO 16486-3.

This document also specifies the test parameters for the test methods it describes.

In conjunction with ISO 16486-1, ISO 16486-2, ISO 16486-3 and ISO 16486-5, this document is applicable to PA-U valves and their joints and to joints with components of PA-U and other materials intended to be used under the following conditions:

- a) a maximum operating pressure (MOP) of up to and including 18 bar¹⁾, or limited to 16 bar under regional CEN requirements, at a reference temperature of 20 °C for design purposes;
 - NOTE 2 For the purpose of this document and the references to ISO 8233, MOP is considered to be nominal pressure.
- b) an operating temperature of -20 °C to 40 °C;
 - NOTE 3 For operating temperatures between 20 °C and 40 °C, derating coefficients are specified in ISO 16486-5.

This document covers valves for pipes with a nominal outside diameter, d_n , ≤ 400 mm.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 291, Plastics — Standard atmospheres for conditioning and testing

ISO 307, Plastics — Polyamides — Determination of viscosity number

ISO 1133-2:2011, Plastics — Determination of the melt mass-flow rate (MFR) and melt volume-flow rate (MVR) of thermoplastics — Part 2: Method for materials sensitive to time-temperature history and/or moisture

¹⁾ $1 \text{ bar} = 0.1 \text{ MPa} = 10^5 \text{ Pa}; 1 \text{ MPa} = 1 \text{ N/mm}^2.$

ISO 1167-1, Thermoplastics pipes, fittings and assemblies for the conveyance of fluids — Determination of the resistance to internal pressure — Part 1: General method

ISO 1167-4, Thermoplastics pipes, fittings and assemblies for the conveyance of fluids — Determination of the resistance to internal pressure — Part 4: Preparation of assemblies

ISO 3126, Plastics piping systems — Plastics components — Determination of dimensions

ISO 3127, Thermoplastics pipes — Determination of resistance to external blows — Round-the-clock method

ISO 8233, Thermoplastics valves — Torque — Test method

ISO 16010, Elastomeric seals — Material requirements for seals used in pipes and fittings carrying gaseous fuels and hydrocarbon fluids

ISO 16486-1, Plastics piping systems for the supply of gaseous fuels — Unplasticized polyamide (PA-U) piping systems with fusion jointing and mechanical jointing — Part 1: General

ISO 16486-2, Plastics piping systems for the supply of gaseous fuels — Unplasticized polyamide (PA-U) piping systems with fusion jointing and mechanical jointing — Part 2: Pipes

ISO 16486-3:2025, Plastics piping systems for the supply of gaseous fuels — Unplasticized polyamide (PA-U) piping systems with fusion jointing and mechanical jointing — Part 3: Fittings

ISO 16486-5, Plastics piping systems for the supply of gaseous fuels — Unplasticized polyamide (PA-U) piping systems with fusion jointing and mechanical jointing — Part 5: Fitness for purpose of the system

ISO 17778, Plastics piping systems — Fittings, valves and ancillaries — Determination of gaseous flow rate/pressure drop relationships

EN 682, Elastomeric seals - Material requirements for seals used in pipes and fittings carrying gas and hydrocarbon fluids

EN 736-1, Valves Terminology — Part 1: Definition of types of valves

EN 736-2, Valves Terminology — Part 2: Definition of components of valves

EN 1680, Plastics piping systems — Valves for polyethylene (PE) piping systems — Test method for leaktightness under and after bending applied to the operating mechanisms

EN 1704, Plastics piping systems — Thermoplastics valves — Test method for the integrity of a valve after temperature cycling under bending

EN 1705, Plastics piping systems — Thermoplastics valves — Test method for the integrity of a valve after an external blow

EN 12100, Plastics piping systems — Polyethylene (PE) valves — Test method for resistance to bending between supports

EN 12119, Plastics piping systems — Polyethylene (PE) valves — Test method for resistance to thermal cycling

koniec náhľadu – text ďalej pokračuje v platenej verzii STN

@ ISO 2025 – All rights reserved