

Regulačné diagramy Časť 4: Diagramy kumulatívnych súčtov

STN ISO 7870-4

01 0272

Control charts
Part 4: Cumulative sum charts

Cartes de contrôle

Partie 4: Cartes de contrôle à somme cumulée

Táto slovenská technická norma obsahuje anglickú verziu medzinárodnej normy ISO 7870-4: 2021 a má postavenie oficiálnej verzie.

This Slovak standard includes the English version of the International standard ISO 7870-4: 2021 and has the status of the official version.

141094

Anotácia

Tento dokument opisuje štatistické postupy na nastavenie systémov kumulatívneho súčtu (CUSUM) pre proces a riadenie kvality za použitia dát meraných premenných a atribútov dát. Opisuje všeobecné používanie metódy rozhodovania pomocou techník kumulatívnych súčtov (CUSUM) na monitorovanie, reguláciu a retrospektívnu analýzu.

Národný predhovor

Normatívne referenčné dokumenty

Na nasledujúce dokumenty sa odkazuje v texte takým spôsobom, že časť ich obsahu alebo celý obsah predstavuje požiadavky tohto dokumentu. Pri datovaných odkazoch sa používa len citované vydanie. Pri nedatovaných odkazoch sa používa najnovšie vydanie citovaného dokumentu (vrátane akýchkoľvek zmien).

POZNÁMKA 1. – Ak bola medzinárodná publikácia zmenená spoločnými modifikáciami, čo je indikované označením (mod), použije sa príslušná EN/HD.

POZNÁMKA 2. – Aktuálne informácie o platných a zrušených STN a TNI možno získať na webovom sídle www.unms.sk.

ISO 3534-1 prijatá ako STN ISO 3534-1 Štatistika. Slovník a značky. Časť 1: Všeobecné štatistické termíny a termíny používané v teórii pravdepodobnosti (01 0216)

ISO 3534-2 prijatá ako STN ISO 3534-2 Štatistika. Slovník a značky. Časť 2: Aplikovaná štatistika (01 0216)

Vypracovanie

Spracovateľ: Úrad pre normalizáciu, metrológiu a skúšobníctvo SR, Bratislava

Technická komisia: TK 71 Aplikácie štatistických metód

Con	tents		Page		
Forev	vord		v		
Intro	ductio	n	v i		
1	Scope	2	1		
2	Norm	native references	1		
3					
3	Terms and definitions, abbreviated terms and symbols 3.1 Terms and definitions				
	3.2	Abbreviated terms			
	3.3	Symbols	2		
4	Princ	Principal features of cumulative sum (CUSUM) charts			
5	Basic	steps in the construction of CUSUM charts — Graphical representation	4		
6	Example of a CUSUM plot — Motor voltages				
	6.1	Process			
	6.2 6.3	Simple plot of resultsStandard control chart for individual results			
	6.4	CUSUM chart construction			
7	_	amentals of making CUSUM-based decisions			
/	7.1	Need for decision rules	عع		
	7.2	Basis for making decisions			
	7.3	Measuring the effectiveness of a decision rule			
		7.3.1 Basic concepts			
		7.3.2 Example of calculation of ARL			
8	Types of CUSUM decision schemes				
	8.1	V-mask			
		8.1.2 Application of the V-mask			
		8.1.3 Average run lengths			
		8.1.4 General comments on average run lengths	15		
	8.2	Fast-initial response (FIR) CUSUM			
	8.3	Tabular CUSUM			
		8.3.2 Deployment			
9	CHEH	M methods for process and quality control			
9	9.1	Nature of the changes to be detected	19 19		
	7.1	9.1.1 Size of the changes to be detected			
		9.1.2 'Step' changes	19		
		9.1.3 Drifting			
		9.1.4 Cyclic			
	9.2	9.1.5 Hunting Selecting target values			
	7.2	9.2.1 General			
		9.2.2 Standard (given) value as target			
		9.2.3 Performance-based target			
	9.3	CUSUM schemes for monitoring location			
		9.3.1 Standard schemes — Limitations			
		9.3.3 'Tailored' CUSUM schemes			
	9.4	CUSUM schemes for monitoring variation			
		9.4.1 General	28		
		9.4.2 CUSUM schemes for subgroup ranges			
	9.5	9.4.3 CUSUM schemes for subgroup standard deviations	32 36		

ISO 7870-4:2021(E)

9.5.2 'One-at-a-time' data 36 9.5.3 Serial dependence between observations 36 9.5.4 Outliers 37 9.6 CUSUM schemes for discrete data 38 9.6.1 Event count — Poisson data 38 9.6.2 Two classes data — Binomial data 40 Annex A (informative) Example of tabular CUSUM 44 Annex B (informative) Estimation of the change point when a step change occurs 48 Bibliography 50		9.5.1	Large between-subgroup variation	36
9.5.4 Outliers 37 9.6 CUSUM schemes for discrete data 38 9.6.1 Event count — Poisson data 38 9.6.2 Two classes data — Binomial data 40 Annex A (informative) Example of tabular CUSUM 44 Annex B (informative) Estimation of the change point when a step change occurs 48		9.5.2	'One-at-a-time' data	36
9.6 CUSUM schemes for discrete data 38 9.6.1 Event count — Poisson data 38 9.6.2 Two classes data — Binomial data 40 Annex A (informative) Example of tabular CUSUM 44 Annex B (informative) Estimation of the change point when a step change occurs 48		9.5.3	Serial dependence between observations	36
9.6.1 Event count — Poisson data		9.5.4	Outliers	37
9.6.2 Two classes data — Binomial data	9.6	CUSU	M schemes for discrete data	38
Annex A (informative) Example of tabular CUSUM Annex B (informative) Estimation of the change point when a step change occurs 48		9.6.1	Event count — Poisson data	38
Annex B (informative) Estimation of the change point when a step change occurs48		9.6.2	Two classes data — Binomial data	40
	Annex A (in	formativ	ve) Example of tabular CUSUM	44
Bibliography 50	Annex B (in	formativ	ve) Estimation of the change point when a step change occurs	48
	Bibliograph	ıv		50

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 69, *Applications of statistical methods*, Subcommittee SC 4, *Applications of statistical methods in process management*.

This second edition of ISO 7870-4 cancels and replaces the first edition (ISO 7870-4: 2011), which has been technical revised.

The main changes compared to the previous edition are as follows:

- Manhattan diagram removed (former 6.7);
- V-mask types in Types of CUSUM decision schemes reduced to one V-mask;
- von Neumann method removed (former Annex A).

A list of all parts in the ISO 7870 series can be found on the ISO website.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html.

Introduction

This document demonstrates the versatility and usefulness of a very simple, yet powerful, pictorial method of interpreting data arranged in any meaningful sequence. These data can range from overall business figures such as turnover, profit or overheads to detailed operational data such as stock outs and absenteeism to the control of individual process parameters and product characteristics. The data can either be expressed sequentially as individual values on a continuous scale (e.g. 24, 60, 31, 21, 18, 97...), in 'yes'/'no', 'good'/'bad', 'success'/'failure' format, or as summary measures (e.g. mean, range, counts of events).

The method has a rather unusual name, cumulative sum, or CUSUM. This name relates to the process of subtracting a predetermined value, e.g. a target, preferred or reference value from each observation in a sequence and progressively cumulating (i.e. adding) the differences. The graph of the series of cumulative differences is known as a CUSUM chart. Such a simple arithmetical process has a remarkable effect on the visual interpretation of the data.

The CUSUM method is already used unwittingly by golfers throughout the world. By scoring a round as 'plus' 4, or perhaps even 'minus' 2, golfers are using the CUSUM method in a numerical sense. They subtract the 'par' value from their actual score and add (cumulate) the resulting differences. This is the CUSUM method in action. However, it remains largely unknown and hence is a grossly underused tool throughout business, industry, commerce and public service. This is probably due to CUSUM methods generally being presented in statistical language rather than in the language of the workplace.

The intention of this document is, thus, to be readily comprehensible to the extensive range of prospective users and so facilitate widespread communication and understanding of the method. The method offers advantages over the more commonly found Shewhart charts in as much as the CUSUM method detects a change of an important amount up to three times faster. Further, as in golf, when the target changes per hole, a CUSUM plot is unaffected, unlike a standard Shewhart chart where the control lines require constant adjustment.

In addition to Shewhart charts, an EWMA (exponentially weighted moving average) chart can be used. Each plotted point on an EWMA chart incorporates information from all the previous subgroups or observations but gives less weight to process data as they get 'older' according to an exponentially decaying weight. In a similar manner to a CUSUM chart, an EWMA chart can be sensitized to detect any size of shift in a process. This subject is discussed further in 7870-6.

Control charts —

Part 4:

Cumulative sum charts

1 Scope

This document describes statistical procedures for setting up cumulative sum (CUSUM) schemes for process and quality control using variables (measured) and attribute data. It describes general-purpose methods of decision-making using cumulative sum (CUSUM) techniques for monitoring, control and retrospective analysis.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 3534-1, Statistics — Vocabulary and symbols — Part 1: General statistical terms and terms used in probability

ISO 3534-2, Statistics — Vocabulary and symbols — Part 2: Applied statistics

koniec náhľadu – text ďalej pokračuje v platenej verzii STN

T

۲,