

STN	Generátory vodíka využívajúce elektrolýzu vody Časť 1: Bezpečnosť (ISO 22734-1: 2025)	STN EN ISO 22734-1
		65 7602

Hydrogen generators using water electrolysis - Part 1: Safety (ISO 22734-1:2025)

Táto norma obsahuje anglickú verziu európskej normy.
This standard includes the English version of the European Standard.

Táto norma bola oznámená vo Vestníku ÚNMS SR č. 10/25

Obsahuje: EN ISO 22734-1:2025, ISO 22734-1:2025

141316

EUROPEAN STANDARD
NORME EUROPÉENNE
EUROPÄISCHE NORM

EN ISO 22734-1

July 2025

ICS 71.100.20; 71.120.99

English version

**Hydrogen generators using water electrolysis - Part 1:
Safety (ISO 22734-1:2025)**

Générateurs d'hydrogène utilisant le procédé
d'électrolyse de l'eau - Partie 1: Sécurité (ISO 22734-
1:2025)

Wasserstofferzeuger auf Grundlage der Elektrolyse von
Wasser - Teil 1: Sicherheitsanforderungen (ISO 22734-
1:2025)

This European Standard was approved by CEN on 29 June 2025.

CEN and CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN and CENELEC member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN and CENELEC member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.

CEN and CENELEC members are the national standards bodies and national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Türkiye and United Kingdom.

**CEN-CENELEC Management Centre:
Rue de la Science 23, B-1040 Brussels**

EN ISO 22734-1:2025 (E)**Contents****Page**

European foreword.....	3
-------------------------------	----------

European foreword

This document (EN ISO 22734-1:2025) has been prepared by Technical Committee ISO/TC 197 "Hydrogen technologies" in collaboration with Technical Committee CEN-CENELEC/ JTC 6 "Hydrogen in energy systems" the secretariat of which is held by NEN.

This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by January 2026, and conflicting national standards shall be withdrawn at the latest by January 2026.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN-CENELEC shall not be held responsible for identifying any or all such patent rights.

Any feedback and questions on this document should be directed to the users' national standards body/national committee. A complete listing of these bodies can be found on the CEN and CENELEC websites.

According to the CEN-CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Türkiye and the United Kingdom.

Endorsement notice

The text of ISO 22734-1:2025 has been approved by CEN-CENELEC as EN ISO 22734-1:2025 without any modification.

International Standard

ISO 22734-1

Hydrogen generators using water electrolysis —

Part 1: Safety

Générateurs d'hydrogène utilisant le procédé d'électrolyse de l'eau —

Partie 1: Sécurité

**First edition
2025-07**

COPYRIGHT PROTECTED DOCUMENT

© ISO 2025

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Email: copyright@iso.org
Website: www.iso.org

Published in Switzerland

Contents

	Page
Foreword	vi
Introduction	vii
1 Scope	1
1.1 General	1
1.2 Applicable hydrogen generators	1
1.3 Applicable ion transport mediums	1
1.4 Applicability to large scale hydrogen generators	1
1.5 Applicability to certain hydrogen generator subassemblies	2
1.6 Excluded hydrogen generators	2
2 Normative references	2
3 Terms and definitions	4
4 Requirements	10
4.1 Operating conditions	10
4.1.1 Energy input specification	10
4.1.2 Feed water specifications	10
4.1.3 Ambient environment	11
4.1.4 Protective gas	11
4.1.5 Delivery of hydrogen	12
4.1.6 Delivery of oxygen	12
4.1.7 Hydrogen venting	12
4.1.8 Oxygen venting	13
4.2 Risk management	14
4.2.1 General requirements	14
4.2.2 Fire and explosion hazard protection requirements	16
4.2.3 Pressure safety requirements	19
4.2.4 Temperature safety requirements	20
4.2.5 Spillage, overflow, and drain	20
4.2.6 Protection of service and maintenance personnel	21
4.3 Chemical reaction equipment	21
4.3.1 General	21
4.3.2 Electrochemical Cells and Stacks	21
4.3.3 Oxygen removal catalytic reactors	22
4.3.4 Hydrogen removal catalytic reactors	23
4.3.5 Gas drying systems	23
4.4 Mechanical equipment	23
4.4.1 General requirements	23
4.4.2 General materials requirements	24
4.4.3 Pressure-bearing equipment	25
4.4.4 Pressure relief devices	27
4.4.5 Fans and ventilators	28
4.4.6 Heat transfer system	28
4.5 Electrical equipment and wiring	28
4.5.1 General requirements	28
4.5.2 Grounding and bonding	29
4.5.3 Touch current and protective conductor current	29
4.5.4 Overcurrent protection	29
4.5.5 Electric heaters	29
4.5.6 Cord anchorage and conductor pull-out	29
4.5.7 Power conversion equipment	29
4.6 Control systems	30
4.6.1 General	30
4.6.2 Safety control circuit	30
4.6.3 Control function in the event of failure	31
4.6.4 Programmable electronic equipment	31

ISO 22734-1:2025(en)

4.6.5	Start	31
4.6.6	Emergency-stop	31
4.6.7	Stop	32
4.6.8	Self-correctable conditions	32
4.6.9	Interconnected installations	32
4.6.10	Safety components	32
4.6.11	Remote control systems	32
4.6.12	Alarms	33
4.6.13	Protective gas quantity	33
4.6.14	Reset	33
4.6.15	Suspension of safeguards	33
4.7	Enclosure requirements	33
4.7.1	Minimum strength	33
4.7.2	Ingress protection	33
4.7.3	Fire resistance	34
4.7.4	Thermal insulating materials	34
4.7.5	Access openings	34
4.7.6	Ventilation openings	34
4.7.7	Containment of hazardous liquid leakage	34
5	Test methods	35
5.1	General	35
5.2	Type (qualification) tests	35
5.2.1	General requirements	35
5.2.2	Basic test arrangements	35
5.2.3	Electrical tests	37
5.2.4	Pressure test	38
5.2.5	Leakage test	40
5.2.6	Dilution tests	41
5.2.7	Protection against the spread of fire tests	42
5.2.8	Temperature tests	42
5.2.9	Environmental test	42
5.2.10	Combustible gas mixture safety test	43
5.2.11	Spillage, overflow, and drain test	43
5.2.12	Stability test	43
5.2.13	Vent tests	43
5.2.14	Operational functional tests	45
5.2.15	Minimum generation rate test	45
5.3	Routine tests	46
5.3.1	General requirements	46
5.3.2	Continuity of the protective bonding circuit test	46
5.3.3	Voltage test	46
5.3.4	Inspection of electrical equipment in hazardous areas	46
5.3.5	Safety-control circuit functional tests	46
5.3.6	Leakage test	46
6	Marking and labelling	46
6.1	General requirements	46
6.2	Hydrogen generator marking	46
6.3	Marking of equipment	47
6.4	Warning labels	48
7	Documentation	48
7.1	General	48
7.2	Hydrogen generator ratings	49
7.3	Hydrogen generator installation	49
7.3.1	General	49
7.3.2	Additional requirements for permanently connected hydrogen generators	49
7.3.3	Additional requirements for indoor installations	50
7.3.4	Additional requirements for built-in hydrogen generators	50

ISO 22734-1:2025(en)

7.3.5	Lifting.....	50
7.4	Hydrogen generator operation.....	51
7.5	Hydrogen generator maintenance	51
Annex A (informative) Hydrogen-assisted corrosion		53
Annex B (informative) Flammability limits of hydrogen		54
Annex C (informative) Reporting Crossover Of Hydrogen And Oxygen.....		55
Annex D (informative) Non-safety related performance tests.....		57
Bibliography.....		60

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO document should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

ISO draws attention to the possibility that the implementation of this document may involve the use of (a) patent(s). ISO takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, ISO had not received notice of (a) patent(s) which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at www.iso.org/patents. ISO shall not be held responsible for identifying any or all such patent rights.

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 197, *Hydrogen technologies*, in collaboration with the European Committee for Standardization (CEN) Technical Committee CEN/CLC/JTC 6, *Hydrogen in energy systems*, in accordance with the Agreement on technical cooperation between ISO and CEN (Vienna Agreement).

This first edition of ISO 22734-1 cancels and replaces ISO 22734:2019.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html.

Introduction

The electrochemical cells of a hydrogen generator system dissociate water molecules (H_2O) into two hydrogen (H_2) gas molecules and one oxygen (O_2) gas molecule when direct electrical current (e^-) is applied. H_2 gas forms at the negative (-) cathode electrode and O_2 gas forms at the positive (+) anode electrode. An ion transport medium between the electrodes, a solid electrolyte membrane or a liquid electrolyte held in a microporous diaphragm, additionally functions to keep product H_2 and O_2 gases separate.

Water electrolysis hydrogen generator systems include the cell(s), electrical conditioning, gas processing, feed water, electrolyte management, cooling, ventilation, and control equipment. Gas compression, feed water conditioning, and other auxiliary equipment can be included. These systems can scale from small self-contained appliances to a group of factory-matched modules comprising large plant size installations.

This document is intended to assess water electrolysis hydrogen generator safety and may be used for certification purposes.

NOTE See ISO/IEC 17000 for further guidance on certification.

Hydrogen generators using water electrolysis —

Part 1: Safety

1 Scope

1.1 General

This document specifies the safety requirements of hydrogen gas generation appliances or systems that use electrochemical reactions to electrolyse water to produce hydrogen, herein referred to as hydrogen generators.

1.2 Applicable hydrogen generators

This document is applicable to:

- hydrogen generator appliances or systems (containerised, or skid mounted, complete hydrogen generation systems);
- factory-matched modules (supplied by the same manufacturer) that, when connected together, form a complete hydrogen generation system;
- hydrogen generators intended for industrial, commercial and residential applications;
- hydrogen generators intended for indoor or outdoor environments.

NOTE When this document is applied to hydrogen gas generation appliances or systems intended for installation into buildings, additional requirements for the design of the building are likely to apply. These building requirements are not addressed in this document. Additionally, the hydrogen generator enclosure requirements in this document do not necessarily translate to requirements for a building.

Guidance for hydrogen generators that also provide oxygen used for industrial and commercial applications is provided in this document, however additional considerations can apply.

1.3 Applicable ion transport mediums

This document is applicable to hydrogen generators that use the following types of ion transport medium:

- aqueous alkaline (basic) electrolytes, such as solutions of potassium hydroxide or sodium hydroxide;
- aqueous acidic electrolytes, such as dilute sulphuric acid;
- solid polymeric materials with acidic function group additions, such as acid proton exchange membrane (PEM);
- solid polymeric materials with basic function group additions, such as anion exchange membrane (AEM).

1.4 Applicability to large scale hydrogen generators

This document is applicable to large scale hydrogen generators assembled on site.

NOTE 1 Large scale water electrolysis systems typically have a production rate of 100 kg/hour or more and can be assembled using modules or equipment from various manufacturers.

NOTE 2 Building requirements are not addressed in this document and the hydrogen generator enclosure requirements in this document do not necessarily translate to requirements for a building.

1.5 Applicability to certain hydrogen generator subassemblies

This document is applicable to:

- electrochemical cell stacks (as stand-alone products);
- modules (sub-systems) for integration into larger hydrogen generation systems.

In such cases, the entirety of this document will not be applicable, and the specific sections relevant to the product are established in order to develop a product conformance strategy.

1.6 Excluded hydrogen generators

This document is not applicable to the following:

- residential hydrogen generators that also supply oxygen as a product;
- hydrogen generators that can also be used to generate electricity, such as reversible fuel cells (refer to IEC 62282-8-101, IEC 62282-8-102 and IEC 62282-8-201);
- hydrogen generators that use solid oxide electrolyte (refer to IEC 62282-8-101 and IEC 62282-8-201).

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 3864-2, *Graphical symbols — Safety colours and safety signs — Part 2: Design principles for product safety labels*

ISO 4126-1, *Safety devices for protection against excessive pressure — Part 1: Safety valves*

ISO 4126-2, *Safety devices for protection against excessive pressure — Part 2: Bursting disc safety devices*

ISO 4126-6, *Safety devices for protection against excessive pressure — Part 6: Application, selection and installation of bursting disc safety devices*

ISO 4126-9, *Safety devices for protection against excessive pressure — Part 9: Application and installation of safety devices excluding stand-alone bursting disc safety devices*

ISO 4126-10, *Safety devices for protection against excessive pressure — Part 10: Sizing of safety valves and bursting discs for gas/liquid two-phase flow*

ISO 7010, *Graphical symbols — Safety colours and safety signs — Registered safety signs*

ISO 7866, *Gas cylinders — Refillable seamless aluminium alloy gas cylinders — Design, construction and testing*

ISO 9809-1, *Gas cylinders — Design, construction and testing of refillable seamless steel gas cylinders and tubes — Part 1: Quenched and tempered steel cylinders and tubes with tensile strength less than 1 100 MPa*

ISO 10286, *Gas cylinders — Terminology*

ISO 11119-1, *Gas cylinders — Design, construction and testing of refillable composite gas cylinders and tubes — Part 1: Hoop wrapped fibre reinforced composite gas cylinders and tubes up to 450 l*

ISO 11119-2, *Gas cylinders — Design, construction and testing of refillable composite gas cylinders and tubes — Part 2: Fully wrapped fibre reinforced composite gas cylinders and tubes up to 450 l with load-sharing metal liners*

ISO 22734-1:2025(en)

ISO 11119-3, *Gas cylinders — Design, construction and testing of refillable composite gas cylinders and tubes — Part 3: Fully wrapped fibre reinforced composite gas cylinders and tubes up to 450 l with non-load-sharing metallic or non-metallic liners or without liners*

ISO 12100, *Safety of machinery — General principles for design — Risk assessment and risk reduction*

ISO 13850, *Safety of machinery — Emergency stop function — Principles for design*

ISO 15534-1, *Ergonomic design for the safety of machinery — Part 1: Principles for determining the dimensions required for openings for whole-body access into machinery*

ISO 15534-2, *Ergonomic design for the safety of machinery — Part 2: Principles for determining the dimensions required for access openings*

ISO 15534-3, *Ergonomic design for the safety of machinery — Part 3: Anthropometric data*

ISO 16111, *Transportable gas storage devices — Hydrogen absorbed in reversible metal hydride*

ISO 16528-1, *Boilers and pressure vessels — Part 1: Performance requirements*

ISO 17398, *Safety colours and safety signs — Classification, performance and durability of safety signs*

ISO 20485, *Non-destructive testing — Leak testing — Tracer gas method*

ISO 26142, *Hydrogen detection apparatus — Stationary applications*

ISO 80079-36, *Explosive atmospheres — Part 36: Non-electrical equipment for explosive atmospheres — Basic method and requirements*

ISO 80079-37, *Explosive atmospheres — Part 37: Non-electrical equipment for explosive atmospheres — Non-electrical type of protection constructional safety "c", control of ignition sources "b", liquid immersion "k"*

IEC 31010:2019, *Risk management — Risk assessment techniques*

IEC 60068-2-18:2017, *Environmental testing — Part 2-18: Tests — Test R and guidance: Water*

IEC 60079-0, *Explosive atmospheres — Part 0: Equipment. General requirements*

IEC 60079-10-1, *Explosive atmospheres — Part 10-1: Classification of areas. Explosive gas atmospheres*

IEC 60079-14, *Explosive atmospheres — Part 14: Electrical installations design, selection and erection*

IEC 60079-17, *Explosive atmospheres — Part 17: Electrical installations inspection and maintenance*

IEC 60079-29-1, *Explosive atmospheres — Part 29-1: Gas detectors. Performance requirements of detectors for flammable gases*

IEC 60079-29-2, *Explosive atmospheres — Part 29-2: Gas detectors. Selection, installation, use and maintenance of detectors for flammable gases and oxygen*

IEC/IEEE 60079-30-1, *Explosive atmospheres — Part 30-1: Electrical resistance trace heating — General and testing requirements*

IEC 60204-1, *Safety of machinery — Electrical equipment of machines — Part 1: General requirements*

IEC 60335-1:2020, *Household and similar electrical appliances — Safety — Part 1: General requirements*

IEC 60445, *Basic and safety principles for man-machine interface, marking and identification — Identification of equipment terminals, conductor terminations and conductors*

IEC 60529, *Degrees of protection provided by enclosures (IP Codes)*

IEC 60730-1:2022, *Automatic electrical controls — Part 1: General requirements*

IEC 60947-1, *Low-voltage switchgear and controlgear — Part 1: General rules*

ISO 22734-1:2025(en)

IEC 60998-2-2, *Connecting devices for low-voltage circuits for household and similar purposes — Part 2-2: Particular requirements for connecting devices as separate entities with screwless-type clamping units*

IEC 60999-1, *Connecting devices — Electrical copper conductors — Safety requirements for screw-type and screwless-type clamping units — Part 1: General requirements and particular requirements for clamping units for conductors from 0,2 mm² up to 35 mm² (included)*

IEC 60999-2, *Connecting devices — Electrical copper conductors — Safety requirements for screw-type and screwless-type clamping units — Part 2: Particular requirements for clamping units for conductors above 35 mm² up to 300 mm² (included)*

IEC 61010-1:2010/AMD1:2016, *Safety requirements for electrical equipment for measurement, control, and laboratory use — Part 1: General requirements*

IEC 61131-1, *Programmable controllers — Part 1: General information*

IEC 61131-2, *Programmable controllers — Part 2: Equipment requirements and tests*

IEC 61508, *Functional safety of electrical/electronic/programmable electronic safety-related systems*

IEC 62368-1, *Audio/video, information and communication technology equipment — Part 1: Safety requirements*

koniec náhľadu – text d'alej pokračuje v platenej verzii STN