

STN	Kvalita vody Stanovenie rozpusteného chrómu (VI) vo vode Fotometrická metóda (ISO 18724: 2025)	STN EN ISO 18724
		75 7491

Water quality - Determination of dissolved chromium(VI) in water - Photometric method (ISO 18724:2025)

Táto norma obsahuje anglickú verziu európskej normy.
This standard includes the English version of the European Standard.

Táto norma bola oznámená vo Vestníku ÚNMS SR č. 01/26

Obsahuje: EN ISO 18724:2025, ISO 18724:2025

Oznámením tejto normy sa ruší
STN EN ISO 23913 (75 7429) z novembra 2009

STN EN ISO 18412 (75 7471) z decembra 2006

141585

EUROPEAN STANDARD
NORME EUROPÉENNE
EUROPÄISCHE NORM

EN ISO 18724

October 2025

ICS 13.060.50

Supersedes EN ISO 18412:2006, EN ISO 23913:2009

English Version

Water quality - Determination of dissolved chromium(VI)
in water - Photometric method (ISO 18724:2025)

Qualité de l'eau - Détermination du chrome dissous(VI)
dans l'eau - Méthode photométrique (ISO 18724:2025)

Wasserbeschaffenheit - Bestimmung des gelösten
Chrom(VI) in Wasser - Photometrisches Verfahren (ISO
18724:2025)

This European Standard was approved by CEN on 14 September 2025.

CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Türkiye and United Kingdom.

EUROPEAN COMMITTEE FOR STANDARDIZATION
COMITÉ EUROPÉEN DE NORMALISATION
EUROPÄISCHES KOMITEE FÜR NORMUNG

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels

Contents

	Page
European foreword.....	3

European foreword

This document (EN ISO 18724:2025) has been prepared by Technical Committee ISO/TC 147 "Water quality" in collaboration with Technical Committee CEN/TC 230 "Water analysis" the secretariat of which is held by DIN.

This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by April 2026, and conflicting national standards shall be withdrawn at the latest by April 2026.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN shall not be held responsible for identifying any or all such patent rights.

This document supersedes EN ISO 23913:2009 and EN ISO 18412:2006.

This document has been prepared under a standardization request addressed to CEN by the European Commission. The Standing Committee of the EFTA States subsequently approves these requests for its Member States.

Any feedback and questions on this document should be directed to the users' national standards body/national committee. A complete listing of these bodies can be found on the CEN website.

According to the CEN-CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Türkiye and the United Kingdom.

Endorsement notice

The text of ISO 18724:2025 has been approved by CEN as EN ISO 18724:2025 without any modification.

International Standard

ISO 18724

Water quality — Determination of dissolved chromium(VI) in water — Photometric method

Qualité de l'eau — Détermination du chrome dissous(VI) dans l'eau — Méthode photométrique

**First edition
2025-10**

COPYRIGHT PROTECTED DOCUMENT

© ISO 2025

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Email: copyright@iso.org
Website: www.iso.org

Published in Switzerland

Contents

	Page
Foreword	iv
Introduction	v
1 Scope	1
2 Normative references	1
3 Terms and definitions	1
4 Interferences	1
4.1 General	1
4.2 Sampling, preservation and storage	2
4.3 Interferences in photometry	2
5 Principle	2
6 Reagents	3
7 Apparatus	6
8 Sampling, sample pretreatment and sample storage	6
8.1 Sampling	6
8.2 Samples with reducing or oxidizing substances	6
8.3 Consideration of the self-absorption of coloured samples	7
8.4 Sample storage	7
9 Procedure	7
9.1 General	7
9.2 Required concentrations of reagents in the reaction vessel	7
9.3 Required concentrations of reagents in the reaction vessel for measuring the intrinsic absorption	8
9.4 Measurement	8
9.5 Calibration	8
9.6 Measurement of chromium(VI)	8
9.7 Validity check of the calibration function	8
9.8 Calculation considering the ordinate intercept	9
9.9 Calculation with zero adjustment of the photometer	9
10 Expression of results	9
11 Test report	10
Annex A (normative) Manual static technique	11
Annex B (normative) Automated static techniques	13
Annex C (normative) Automated dynamic techniques	15
Annex D (normative) Calculations for adjusting reagent concentrations, volumes and flows	22
Annex E (informative) Performance data	25
Bibliography	28

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO document should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

ISO draws attention to the possibility that the implementation of this document may involve the use of (a) patent(s). ISO takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, ISO had not received notice of (a) patent(s) which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at www.iso.org/patents. ISO shall not be held responsible for identifying any or all such patent rights.

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 147, *Water quality*, Subcommittee SC 2, *Physical, chemical and biochemical methods*, in collaboration with the European Committee for Standardization (CEN) Technical Committee CEN/TC 230, *Water analysis*, in accordance with the Agreement on technical cooperation between ISO and CEN (Vienna Agreement).

This first edition of ISO 18724:2025 cancels and replaces ISO 11083:1994, ISO 18412:2005 and ISO 23913:2006.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html.

Introduction

Chromium is an important raw material in the industrial manufacturing process that can contaminate sources of drinking water (e.g. groundwater, surface water). The most common oxidation states of chromium are +3 and +6. The hexavalent form (Cr(VI)) is far more toxic and water-polluting than the trivalent form (Cr(III)).

The chromium content depends on several factors: the availability of chromium in the rock, the weathering stage and the vicinity. Chromium(VI) occurs mainly in the aerobic environment; under reducing or anaerobic conditions, chromium(VI) is reduced to chromium(III).

Chromium(VI) occurs naturally in groundwater aquifers, mostly in low concentrations depending on the occurrence in geological formations, e.g. volcanic rocks.

Other sources of chromium(VI) contamination for the environment are industrial activities, e.g. the production of textiles, leather tanning or electroplating.

A sensitive and specific photometric method for the determination of hexavalent chromium is the reaction with 1,5-diphenylcarbazide (DPC). Most of the standardized procedures are based on DPC chemistry, specifying different reaction conditions.

This procedure describes a uniform procedure that can be used for different photometric measuring devices, such as static or dynamic techniques. The available techniques vary in sensitivity. The choice of the technique used for the measurement depends on the chromium(VI) concentration expected in the sample.

The choice of the analytical technique to be used and the needs-based sample preparation (e.g. matrix elimination) enables the determination of chromium(VI) in concentrations $\geq 0,02 \mu\text{g/l}$ in raw water, drinking water, surface water, aqueous eluates, cooling water and treated wastewater, provided that the matrix does not contain any reducing substances. Typical areas of application for the static techniques as well as FIA and CFA are samples with chromium(VI) concentrations $\geq 2 \mu\text{g/l}$. When using cuvettes with large optical path lengths, for example $> 100 \text{ mm}$, the range of application can be extended to concentrations $< 2 \mu\text{g/l}$ chromium(VI) (see [Annex A](#), [Annex B](#), [Clause C.2](#) and [Clause C.3](#)). When using coupled techniques [e.g. ion chromatography with post-column reaction (IC-PCR)], chromium(VI) concentrations $\geq 0,02 \mu\text{g/l}$ can be determined (see [Clause C.4](#)).

Water quality — Determination of dissolved chromium(VI) in water — Photometric method

WARNING — Persons using this document should be familiar with normal laboratory practice. This document does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user to establish appropriate safety and health practices.

IMPORTANT — It is absolutely essential that tests conducted in accordance with this document be carried out by suitably qualified staff.

1 Scope

This document specifies a method for the photometric determination of dissolved chromium(VI) using manual, (e.g. hand photometry), automated static (e.g. discrete analyser system) or automated dynamic [e.g. flow injection analysis (FIA), continuous flow analysis (CFA)] or ion chromatography with post-column reaction (IC-PCR) techniques.

The method described in this document is applicable for other matrices, such as leachates from landfills and raw wastewater, after appropriate method validation.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes the requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 8466-1, *Water quality — Calibration and evaluation of analytical methods — Part 1: Linear calibration function*

ISO 8466-2, *Water quality — Calibration and evaluation of analytical methods and estimation of performance characteristics — Part 2: Calibration strategy for non-linear second-order calibration functions*

ISO/TS 13530, *Water quality — Guidance on analytical quality control for chemical and physicochemical water analysis*

koniec náhľadu – text ďalej pokračuje v platenej verzii STN